RECEIVED

JUN 16 2016

DENN FAYETTEVILLE REGIONAL OFFICE

CHEMOURS COMPANY FAYETTEVILLE WORKS

AIR PERMIT NUMBER 03735T42 FACILITY ID 0900009

2015
AIR
EMISSIONS
INVENTORY
REPORT

COPY of RECORD Date Submitted: 6/14/2016 11:34:43

Inventory Certification Form(Title V)

Facility Name: Chemours Company - Fayetteville Works

22828 NC Highway 87 West Fayetteville, NC 28306 Facility ID: 0900009 Permit: 03735 County: Bladen DAQ Region: FRO

North Carolina Department of Environment and Natural Resources
Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2015

These forms must be completed and returned even if the facility did not operate or emissions were zero

The legally defined "Responsible Official" of record for your facility is Ellis McGaughy
This person or one that meets the definition below must sign this certification form.

The official submitting the information must certify that he/she complies with the requirements as specified in Title 15A NCAC 2Q.0520(b) which references and follows the federal definition. 40 CFR Part 70.2 defines a responsible as meaning one of the following:

- 1. For a corporation: a president, secretary, treasurer, or vice—president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision making functions for the overall operation of one or more manufacturing, production, or operating facilities applying for a or subject to a permit and either
 - i. the facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million(in second quarter 1980 dollars); or
 - ii. the delegation of authority to such representatives is approved in advance by the permitting authority;
- 2. For partnership or sole propietorship; a general partner or the proprietor, respectively;
- 3. for a muncipality, state, federal, or other public agency includes the chief executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., a Regional Administrator of EPA).

CERTIFICATION STATEMENT: (Important: Legally Responsible Official, read and sign after all submissions are final.) I certify that I am the responsible official for this facility, as described above, and hereby certify that the information contained in this air emissions report, including attached calculations and documentation, is true, accurate and complete. (Subject to legal penalities of up to \$25,000 per occurrence and possible imprisonment as outlined in G.S.§143-215.3(a)(2)) Responsible Official's Signature Below (use blue ink): Date Signed: (3/14/2016) Printed Name: Ellis McGaughy Signature: Alla H. M. Signature Below (use blue ink): Date Signed: (3/14/2016) This form applies to Title V facilities. If this facility is not classified as Title V, please telephone your regional office Emission Inventory contact at once for proper forms.

RECEIVED

Email address of Responsible Official:

Ellis.H.McGaughy@chemours.com

JUN 16 2016

DEINN FAYETTEVILLE REGIONAL OFFICE

Information on this Form cannot be held confidential

Wastewater Sludge Dryers
(Title V ID Nos. WTS-B and WTS-C)
(AERO ID G-42)

Supporting Documentation for WWTP Sludge Dryers (WTS-B and WTS-C)

The Specific Conditions for the Impingement Type Wet Scrubber (ID No. WTCD-1) is discussed in Part 1 Section 2.1(E) of the site's Title V Air Permit. The Permit states that the scrubber is to control the "odorous emissions from the wastewater treatment sludge dryers (Nos. WTC-B and WTS-C)."

Major categories of offensive odors from the drying of activated sludge could generally be grouped into the following:

Odor Category	Common Chemical in Odor Category	Odor Threshold of Common Chemical (ppmv)
Amines	Methyl amine	0.021
Ammonia	Ammonia	1.5
Hydrogen sulfide	Hydrogen sulfide	0.13
Mercaptans	Methyl mercaptan	0.002
Organic sulfides	Dimethyl sulfide	0.001
Skatole	3-Methyl-1H-indole	0.019

Based on the lack of odors coming from the discharge of the WWTP Sludge Dryer scrubber, and the low odor threshold of the possible odorous compounds coming from the scrubber, it is believed that only an insignificant amount of VOCs could be emitted from this source.

To quantify the worst-case scenario, it will be assumed that the scrubber is running continuously during the entire year with the above compounds being vented at their odor threshold concentration. This is an obvious overstatement of actual emissions since the WWTP Scrubber normally operates with no detectable odors.

Conversion of concentration expressed as ppmv to mg/m³ is via the following equation:

$$\frac{\text{mg}}{\text{m}^3} = \frac{\text{ppmv} \times 12.187 \times \text{Molecular Weight}}{(273.15 + \text{Temperature})^{\circ}\text{C}}$$

For the purpose of this concentration conversion, it will be assumed that the actual scrubber discharge temperature is a constant 27 °C. Therefore, the above equation reduces to:

$$\frac{\text{mg}}{\text{m}^3}$$
 = 0.0406 × ppmv × Molecular Weight

For example, converting 0.021 ppmv of methyl amine (MW = 31) to mg/m^3 follows:

$$0.0406 \times 0.021 \, ppmv \times 31 \frac{grams}{mole} = 0.026 \frac{mg}{m^3}$$

Conversion of concentration from ppmv to mg/m³

Compound	Molecular Weight (grams per mole)	Odor Threshold (ppmv)	Odor Threshold (mg/m³)
Methyl amine	31	0.021	0.026
Ammonia	17	1.5	1.035
Hydrogen sulfide	34	0.13	0.179
Methyl mercaptan	48	0.002	0.004
Dimethyl sulfide	62	0.001	0.048
3-Methyl-1H-indole	131	0.019	0.101

Scrubber (ID No. WTCD-3) design air flow rate is 23,850 cubic feet per minute.

This flow rate is converted to cubic meters per year by the following:

$$23,850 \frac{\text{ft}^3}{\text{min}} \times 0.0283 \frac{\text{m}^3}{\text{ft}^3} \times 60 \frac{\text{min}}{\text{hr}} \times 8,760 \frac{\text{hr}}{\text{yr}} = 354,756,350 \frac{\text{m}^3}{\text{yr}}$$

Emissions Determination:

		Multiplied by:	Multiplied by:	Equals:
Compound	Odor Threshold (mg/m³)	Scrubber Flow Rate (m³/yr)	Mass Conversion (lb/mg)	Emission Rate (lb/yr)
Methyl amine	0.026	354,756,350	2.2046×10^{-6}	20.3
Ammonia (Note 1)	1.035	354,756,350	2.2046×10^{-6}	809.5
Hydrogen sulfide (Note 1)	0.179	354,756,350	2.2046×10^{-6}	140.0
Methyl mercaptan (Note 1)	0.004	354,756,350	2.2046×10^{-6}	3.1
Dimethyl sulfide (Note 1)	0.048	354,756,350	2.2046×10^{-6}	37.5
3-Methyl-1H-indole	0.101	354,756,350	2.2046×10^{-6}	79.0

Note 1: These compounds are listed as HAPs and/or TAPs

VOC Emissions Determination:

Methyl amine	20.3 lb/yr
Methyl mercaptan	3.1 lb/yr
Dimethyl sulfide	37.5 lb/yr
3-Methyl-1H-indole	79.0 lb/yr
Total VOC	139.9 lb/yr
Total VOC	0.07 TPY

Polymer Processing Aid Process
AS-A

2015 AIR EMISSIONS SUMMARY POLYMER PROCESSING AID PROCESS

VOC Emis	ions	lb/yr
FRD901		0.3
Dimer		28.2
Dimer Acid		4.1
	Total VOC emissions (lb/yr)	32.6
	Total VOC emissions (ton/yr)	0.02

Particula	te (PM) Emisions	lb/yr
FRD902		2.5
· 1	Total PM emissions (lb/yr)	2.5
	Total PM emissions (ton/yr)	0.001

Toxic Air Pollutant (TAP) Emisions	lb/yr
Ammonia	61.7
HF	3.8
H2SO4	45.8

Note: NCDAQ requires that Acid Fluorides be reported as "Fluorides" as well as HF.

Ammonia (NH₃)

Definitions

PT= Total Pressure

VP_i = Vapor Pressure of Component i

P_i = Partial Pressure of Component i

X_i = Mole Fraction of Component i in the Liquid

Y_i = Mole Fraction of Component i in the Vapor

K_i = Henry's Law Constant

Assumptions

Ideal Gas Laws apply and all solutions are considered Ideal Solutions

Vapor Pressure is constant over temperature range. Value used is for worst case ie. max ambient temp (90 F) from Tanner Industries table for Aqua Ammonia

Constants

Molecular Weight of NH ₃	17
Molecular Weight of Water	18
Molecular Weight of pure 902	347
VP of 19% solution [mm Hg]	382
Specific Gravity of 19% solution	0.94
Specific Gravity of 70% 902	1.47
Density of Water [g/cm³]	0.995
K _{NH3} [atm]	0.95

Conversions

1 gallon = 3.785 liters = 3.785 cm³ = 231 in³

1 atm = 760 mm Hg = 14.7 psi

1 lb = 454 grams

1 ft³ =28.3 liters

Leak Rates [lb/hour] (using "Good" factor for DuPont facilities)

 Pump Seals
 0.00750

 Valves
 0.00352

 Flanges
 0.00031

Equations

 $P_i=X_i*K_i$

Henry's Law (used for dilute solutions)

P_i=X_i*Vpi

Raoult's Law

 $Y_i = P_i/PT$

Assumptions & Notes

Tote is filled from 55 gallon drums and displaced vapors exit into atmosphere

Tote Filling

Number of drums added to tote during fill	4
Total vapor displaced during fill [liters]	832.7
Number of fills per year	88
Total vapor displaced during year [liters]	73,278
P _{NH3} [mm Hg]	64.097
Y _{NH3}	0.08434
Total NH₃ vapor displaced during year[liters	6180.1
Total NH ₃ vapor displaced during year [lbs]	10.3309

902 Reactor Charging

Number of batches per year	328
Average pump run time per batch (min)	30
Number of flanges in line	15
Number of open valves in line	4
Number of pump seals (air diaphragm)	0
Total pump time for year [hours]	164
Total fugitive emmisions [lbs]	3.0717

Line is liquid-filled during entire charging time and empty during non-charging time

905 Reactor Charging	
Number of batches per year	18
Average drop time per batch (min)	360
Number of flanges in line	15
Number of open valves in line	10
Number of pump seals (air diaphragm)	0
Total drop time for year [hours]	108
Total fugitive emmisions [lbs]	13.8024

902 Reactor Emissions

Vessel Capacity [gal] Additions between fillout Avg. 903 addition from Rec Tk [lbs] % 903 in Addition Total 903 addition [lbs] Water Charge from 903 [lbs] 19% Ammonia Charge [lbs] Vapor space of 902 Reactor minus heel, % Ammonia after Dilution	1,000 3 1,800 90% 4,860 486 1,215.00 390.33 0.035
VP after dilution [mm Hg] Moles of 902 Moles of Water Moles of NH ₃ X _{NH3} P _{NH3} [mm Hg] Y _{NH3} Total NH ₃ vapor to scrubber [lb mol/batch] Total NH ₃ vapor to scrubber [lbs/batch] Total NH ₃ vapor to Scrubber [lbs/year] Assumed Efficiency of Scrubber Ammonia exiting Stack [lbs/year]	90 1271.72 110,322 6,165 0.05235 37.7990 0.04974 0.00619 0.10528 34.5307 0

Ammonia gas, through vapor pressure, fills entire available vapor space of Reactor. This entire volume is then vented to the Scrubber before 903 is charged and reaction to 902 instantly occurs.

Ammonia VP is reduced after dilution. Value used is from table for 2% at standard operating temp (100F)

0.019 psi / mm Hg 10.73 - gas constant in ${\rm ft}^3$ psi / ${\rm ^\circ R}$ lb mole 7.48 gal / ${\rm ft}^3$

Total Ammonia Emissions [lbs/year]

61.7

Sulfuric Acid (H₂SO₄)

Constants

Molecular Weight of H ₂ SO ₄	98.1	•	Leak Rates [lb/hour]	Good	Excellent
Molecular Weight of Water	18	1.00	Pump Seals	0.0075	0.00115
VP of Sulfuric [mm Hg]	0.01		Valves	0.00352	0.00036
K _{H2SO4} [atm] -> 0 [atm] therefore	Raoult's Law will on	ly be used	Flanges	0.00031	0.00018

Assumptions & Notes

Oleum Storage Tank contains no flanges/valves below liquid line and because the VP of H2SO4 is so low, any vapor leaks out of flanges above liquid line are negligible as well as vapor losses to Scrubber during Oleum Storage Tank filling and hose blow-down.

	and the second second second second	
Sulfuric Acid Storage Tank Filling		
Average fill size [gallons]	3000	
Number of fills per year	7	
Total vapor displaced during year [liters]	79485	
P _{H2SO4} [mm Hg]	0.00986	
Y _{H2SO4}	1.298E-05	
Total H ₂ SO ₄ vapor displaced during year [liters]	1.03161	
Total H ₂ SO ₄ vapor displaced during year [lbs]	0.00995	
2		
H ₂ SO ₄ Storage Tank Emmisions	4	Because Sulfuric has such a low VP, leaks out of
Avg time vessel is inventoried [days/yr]	335	vessel above the liquid line are negligible
Number of vessel flanges (below inventory line)	4	
Number of open valves (below inventory line)	1	
Fugitive H ₂ SO ₄ emissions [lbs/year]	38.2704	
Hydrolysis Reactor Charging		·
Number of acid charges per year	328	
Average pump run time per batch (min)	15	Line is liquid-filled during entire charging time and
Number of flanges in line	25	empty during non-charging time
Number of open valves in line	9	
Number of pump seals	1	
Total pump time for year [hours]	82	
Total fugitive emmisions [lbs]	3.84826	
Hydrolysis Reactor Emissions		
Vessel capacity [gal]	600	Worst Case - liquid molar ratio of H ₂ SO ₄ at time of
Hydro Reactor Charge of water [lbs]	2000	venting is same as initial charge
Hydro Reactor Charge of Water [ibs]	590	Avg pressure at time of vent = atmosphere
Batches per year	984	Entire available head space is vented to the Scrubber
Avg Level of Vessel at Vent [gallons]	490	critic available read space is verified to the Scrubber
X _{H2SO4}	0.59431	
P _{H2SO4} [mm Hg]		
· · · · · · · · · · · · · · · · · · ·	0.00594	
Y _{H2SO4}	7.820E-06	0.019 psi / mm Hg
H ₂ SO ₄ vapor vented to Scrubber [lb mol/batch]	2.744E-07	10.73 - gas constant in ft³ psi / °R lb mole
H₂SO₄ vapor vented to Scrubber [lbs/year]	0.026488	7.48 gal / ft ³
Assumed Efficiency of Scrubber	0.95	
H₂SO₄ exiting Stack [lbs/year]	0.001324	
Avg time vessel is inventoried [days/yr]	335	Closed valves and instruments connections
Number of vessel flanges (below inventory line)	7	considered flanges
Number of open valves (below inventory line)	Ó	Because Sulfuric has such a low VP, leaks out of
Fugitive H ₂ SO ₄ emissions [lbs/year]	3.66383	vessel above the liquid line are negligible
• • • • • • • • • • • • • • • • • • •		roover above the liquid line are negligible

Dilution Tank Emissions (Mix and Settle)	
Vessel capacity [gal]	1,963
Avg Level of Vessel at Vent [gallons]	800
Batches per year	0
Mass fraction of H ₂ SO ₄	0.2
Pressure of Vessel at Vent [mm Hg]	760
X _{H2SO4}	0.57672
P _{H2SO4} [mm Hg]	0.00577
Y _{H2SO4}	7.588E-06
H ₂ SO ₄ vapor vented to Scrubber [liters/batch]	0.03340
H ₂ SO ₄ vapor vented to Scrubber [lbs/year]	0.00000
Assumed Efficiency of Scrubber	0.95
H₂SO₄ exiting Stack [lbs/year]	0.00000
Dilution Trailer Loadout Emissions Number of transfers per year Average pump run time per transfer (min) Number of flanges in line Number of open valves in line Number of pump seals Total pump time for year [hours]	0 60 30 11 1
Total fugitive emmisions [lbs]	0.00000
Total H ₂ SO ₄ Emissions [lbs/year]	45.8

Entire available head space is vented to the Scrubber

Line is liquid-filled during entire charging time and empty during non-charging time

Hydrofluo	ric Acid	(HF)
-----------	----------	------

	•	Equipment Leak Rates [lb/hr]
Molecular Weight of HF	20	Good Excellent
Molecular Weight of DAF	332	Pump Seal 0.0075 0.00115
Molecular Weight of H ₂ SO ₄	98.1	Valves 0.00352 0.00036
Molecular Weight of Dimer Acid	330	Flanges 0.00031 0.00018
Molecular Weight of Water	18	1 langes 0.00001 0.00010
VP at 60°C [mm Hg]	2	
K _{HF}	0.006	
¹ HF	0.000	
Hydrolysis Reactor Emissions		Assumptions & Notes
Vessel capacity [gal]	600	Worst Case - 100% conversion
Water Charge [lbs]	2040	resulting in maximum HF
93% Sulfuric Charge [lbs]	600	generation
DAF Charge [lbs]	1700	generation
HF (post reaction) [lbs]	102.41	VP listed is for 10% solution
Dimer Acid (post reaction) [lbs]	1689.76	which is an over-estimation.
Water (post reaction) [ibs]	1947.83	which is an over-estimation.
· · · · · · · · · · · · · · · · · · ·	600	
Sulfuric (post reaction) [lbs]	490	Gas Constant
Avg Level of Vessel at Vent [gal] Mass Fraction of HF	0.0236	·
		10.73 ft3 psi / °R lb mol
X_{HF}	0.0411	0.019 psi / mm Hg
P _{HF} [mm Hg]	0.1874	7.48 gal / ft3
Y_{HF}	0.000247	
HF vapor vented to Scrubber [lb mol/batch]	8.65E-06	
HF vapor vented to Scrubber [lbs/year]	0.0479	Because HF has a low VP, leaks
Assumed Efficiency of Scrubber	0.95	out of vessel above the liquid line
HF exiting Stack [lbs/year]	0.00240	are negligible
The exiting otder [looryear]	0.002-0	are negligible
Avg time vessel contains Virgin material [days/yr]	150	Emissions from Dilution Tank are
Number of vessel flanges (below inventory line)	7	negligible based on the
Number of open valves (below inventory line)	0	concentration, time in vessel, and
Fugitive HF emissions [lbs/year]	2.093	VP of HF
		V. O
Trailer Loadout Emissions	4	
Number of transfers per year	0	•
Average pump run time per transfer (min)	60	
Number of flanges in line	30	Accounting for Hydrolysis of DAF
Number of open valves in line	11	in the atmoshpere into FRD903
Number of pump seals	1	which releases HF on a one mole
Total pump time for year [hours]	0	to one mole basis
Total fugitive emmisions [lbs]	0.00000	P
. The regions of involved in a	5.5555	
Emissions based on DAF	1.699	
Total HF Emissions [lbs/year]	3.8	•

Perfluoro-2-Propoxy Propionyl Fluoride (C₆F₁₂O₂) (Dimer)

Emissons based on data collected during stack testing in 2006.

Note 1

Virgin Campaign Emission Rate [lbs/hr]

Amount of Annual Time dedicated to FRD Production [fraction]

Fraction of Emissions that are Dimer

Total DAF Emissions [lbs/year]

Note 3

Assumptions & Notes

- Note 1 Calculations will be based on the air emissions conducted for the combined PFOF,PFOA, and APFO molecules noting that this **Dimer molecule will be modeled as the PFOF molecule.**
- Note 2 Emission Rates are based on previously conducted stack testing and represent the combined output of PFOF, PFOA, and APFO.
- Note 3 Based on 2006 analysis.

Perfluoro-2-Propoxy Propionic Acid (C₆F₁₁O₃H) (Dimer Acid GX903)

Emissons based on data collected during stack testing in 2006.		Note 1
Virgin Campaign Emission Rate [lbs/hr]	0.008	Note 2
Purified Campaign Emission Rate [lbs/hr]	0.0024	
Amount of Annual Time dedicated to GX Virgin Production [fraction]	0.47	
Amount of Annual Time dedicated to GX Purified Production [fraction]	0.10	
Fraction of Emissions that are Dimer Acid	0.0896	Note 3

Total Dimer Acid Emissions [lbs/year]

4.1

Assumptions & Notes

- Note 1 Calculations will be based on the air emissions conducted for the combined PFOF,PFOA, and APFO molecules noting that this **Dimer molecule will be modeled** as the **PFOF molecule**.
- Note 2 Emission Rates are based on previously conducted stack testing and represent the
- Note 3 Based on 2006 analysis.

FRD901

Definitions

PT= Total Pressure

VP_i = Vapor Pressure of Component i

P_i = Partial Pressure of Component i

X_i = Mole Fraction of Component i in the Liquid

Y_i = Mole Fraction of Component i in the Vapor

K_i = Henry's Law Constant

Constants

Molecular Weight of FRD901: 1533

Equipment Leak Rates [lb/hr] (using "Good" factor)

Pump Seals Valves 0.00750 0.00352

Flanges

0.00031

Equations

 $P_i = X_i * K_i$

Henry's Law (used for dilute solutions)

P_i=X_i*Vpi

Raoult's Law

 $Y_i = P_i/PT$

Assumptions

Ideal Gas Laws apply and all solutions are considered Ideal Solutions

Vapor Pressure is constant over temperature range. Value used is for worst case ie. max ambient temp (90 F)

Conversions

1 gallon = 3.785 liters = 3,785 cm³ = 231 in³

1 atm = 760 mm Hg = 14.7 psi

1 lb = 454 grams

1 ft³ =28.3 liters

Assumptions & Notes

Tote is filled from 14 gallon drums and displaced vapors exit into atmosphere

Line is liquid-filled during entire charging time and empty during non-charging time

FRD901 Tank Filling

Number of drums added to tote during fill	2
Total vapor displaced during fill [liters]	105.98
Number of fills per year	14
Total vapor displaced during year [liters]	1,484
P ₉₀₁ [mm Hg]	0.004
Y ₉₀₁	0.00000
Total 901 vapor displaced during year[liters]	0.0071
Total 901 vapor displaced during year [lbs]	0.0011
Average pump run time per batch (min)	10
Number of flanges in line	10
Number of open valves in line	2
Number of pump seals (air diaphragm)	· ; 1
Total pump time for year [hours]	4.7
Total fugitive emmisions [lbs]	0.0834

901 Reactor Charging

	Number of batches per year	18
	Average drop time per batch (min)	45
•	Number of flanges in line	6
	Number of open valves in line	4
	Number of pump seals (air diaphragm)	0
	Total drop time for year [hours]	13.5
	Total fugitive emmisions [lbs]	0.2152

Total FRD901 Emissions [lb/year]

0.3

Propanoic acid, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-, ammonium salt (GX902)

Emissons based on data collected during stack testing in 2006.		Note 1
Virgin Campaign Emission Rate [lbs/hr]	0.008	Note 2
Purified Campaign Emission Rate [lbs/hr]	0.0024	
Amount of Annual Time dedicated to GX Virgin Production [fraction]	0.47	
Amount of Annual Time dedicated to GX Purified Production [fraction]	. 0.10	
Fraction of Emissions that are GX902	0.05413	Note 3
	·	

Total GX902 Emissions [lb/year]

2.5

Assumptions & Notes

- Note 1 Calculations will be based on the air emissions conducted for the combined PFOF,PFOA, and APFO molecules noting that this **Dimer molecule will be modeled as the PFOF molecule.**
- Note 2 Emission Rates are based on previously conducted stack testing and represent the combined output of PFOF, PFOA, and APFO.
- Note 3 Based on 2006 analysis.

E0348)

AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No.:

FS-B

Emission Source Description:

Polyvinyl Fluoride Process No. 1

Process and Emission Description:

The PVF process is a continuous manufacturing process. All emissions from this process vent to the atmosphere, some via a vertical stack. The calculation of emissions of VOCs will be addressed in the attached spreadsheet.

Basis and Assumptions:

FEP-B1 (Analytical Equipment) emissions are calculated using the flowmeters feeding the analyzers and the rotometers in the GC bypass loops (which are not routinely valved to the stack).

FEP-B2 (Maintenance Header) is only in operation when equipment is vented for maintance. A flowmeter is installed immediately upstream of the VF Dispersion Stack. Procedure requires the line to be purged with N2, then vent VF and then purged with N2 at least 3 times to remove low concentrations of VF. After maintenance air is removed by purging the equipment with N2 an additional 3 times (min). In July of 2011, a densitometer was installed, calibrated and verified. The densitometer accurately measures the percent of VF in the gas leaving via the maintenance vent header, giving an accurate emission total for that source. The year's Maintenance Header emissions are calculated using data from the densitometer.

FEP-B3 (Flash Tank) emissions are based on the operating pressure, temperature, and flow through the Low Pressure Slurry Separator. It is assumed that if VF Flow to the PVF reactor is less than 1000 pph, then there is no VF leaving the Flash Tank.

FEP-B4 (Product Collection System) emissions are based on the operating time and production rate of the baghouse and the bag efficiency. According to the manufacturer, W.L. Gore, the Baghouse bags have a 99.97% efficiency rating on 0.3 micron particulate. We don't expect to have any particles smaller than that, so emissions will be 0.488 lb. PVF particulate emission per Polymer Production Unit (PPU).

Information Inputs and Source of Info.:

IP.21 and rotometers.

Point Source Emissions Determination:

Point source emissions for individual components are given in the attached spreadsheet.

Equipment Emissions and Fugitive Emissions Determination:

Emissions from equipment leaks will be individually indentified. True fugitive (non-point source) emissions have been determined using equipment component emission factors established by DuPont. The determination of those emissions are shown in a separate section of this supporting documentation.

PVF-1 Process VOC Determination (Emission Source ID Nos. FS-B)

Year 2015

A colored Product (AZ A EL C. P. A.		1, 4	
Analytical Equipment Vent Flow Rates	•	4.000	- п .
Vent No. FEP-B1 flow rate (Q _{FEP-B1})		4,338	pounds
Analytical Equipment VOC emissions $(E_{\text{FEP-B1}})$		4,338	pounds
Maintenance Header Vent Flow Rates			
Vent No. FEP-B2 flow rate (Q _{FEP-B2})		40,777	pounds
Maintenance Headers VOC emissions (E _{FEP-B2})		40,777	pounds
Flash Tank Vent Flow Rates		·	
Emissions from Vent No. FEP-B3 flow rate (QFEP-B)	3)	3,613	pounds
Flash Tanks VOC emissions (E _{FEP-B3})		3,613	pounds
			-
ugitive Emissions			
Fugitive emissions from FS-B (E _{F-B})		1,886	pounds
Total fugitive emissions (E _F)		1,886	pounds
	p ·		
Accidental Releases			
Accidental releases from FS-B (Q _{A-B})		1	pounds
Total accidental releases (E _A)		1	pounds
			_
OC emissions (E) from the PVF-1 facility			
Analytical Equipment VOC emissions ($E_{\text{FEP-B1}}$)		4,338	pound
Maintenance Headers VOC emissions (E _{FEP-B2})		40,777	pounds
Flash Tanks VOC emissions (E _{FEP-B3})		3,613	pound
Total fugitive emissions (E _F)		1,886	pounds
Total accidental releases (E _A)		- 1	pounds
Total VOC emissions (E) from the PVF-1 facility		50,615	pounds
			1 .

25.31

tons

* Note: VOC emissions are exclusively vinyl fluoride

PVF-1 Process PM Determination (Emission Source ID Nos. FS-B)

Year 2015

Basis and Assumptions:

FEP-B4 (Product Collection System) emissions are based on the operating time and production rate of the baghouse and the bag efficiency. According to the manufacturer, W.L. Gore, the Baghouse bags efficiency rating on 0.3 micron particulate indicates the potential particulate emissions would be 0.488 lb. particulate matter ("PM") per Polymer Production Unit ("PPU"). It is not expected that any particles would be smaller than 0.3 micron.

Determination of Particulate Matter Emissions

Production during reporting year PM Emission Factor

Total PM emissions from the PVF-1 facility

	_
3,418	PPU
0.488	lb-PM / PPU
1,669	pounds
0.83	tons

Polyvinyl Fluoride Process No. 2 FS-C

(0566)

AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No.:

FS-C

Emission Source Description:

Polyvinyl Fluoride Process No. 2

Process and Emission Description:

The PVF process is a continuous manufacturing process. All emissions from this process vent to the atmosphere, some via a vertical stack. The calculation of emissions of VOCs will be addressed in the attached spreadsheet.

Basis and Assumptions:

FEP-C1 (Analytical Equipment) emissions are calculated using the flowmeters feeding the analyzers and the rotometers in the GC bypass loops (which are not routinely valved to the stack).

FEP-C2 (Maintenance Header) is only in operation when equipment is vented for maintance. A flowmeter is installed immediately upstream of the VF Dispersion Stack. Procedure requires the line to be purged with N2, then vent VF and then purged with N2 at least 3 times to remove low concentrations of VF. After maintenance air is removed by purging the equipment with N2 an additional 3 times (min). It is therefore conservatively assumed that 50% of the flow is VOC (VF or Propylene) when densitometer data is not available (January-April). In May of 2012, a densitometer was installed, calibrated and verified. The densitometer accurately measures the percent of VF in the gas leaving via the maintenance vent header, giving an accurate emission total for that source. The year's Maintenance Header emissions are calculated using data from the densitometer from May through December and in January through April, 50% of the flow was assumed to be VOC.

FEP-C3 (Flash Tank) emissions are based on the operating pressure, temperature, and flow through the Low Pressure Slurry Separator. It is assumed that if VF Flow to the PVF reactor is less than 1000 pph, then there is no VF leaving the Flash Tank.

FEP-C4 (Product Collection System) emissions are based on the operating time and production rate of the baghouse and the bag efficiency. According to the manufacturer, W.L. Gore, the Baghouse bags have a 99.97% efficiency rating on 0.3 micron particulate. We don't expect to have any particles smaller than that, so emissions will be 0.488 lb. PVF particulate emission per Polymer Production Unit (PPU).

Information Inputs and Source of Info.:

IP.21 and rotometers.

Point Source Emissions Determination:

Point source emissions for individual components are given in the attached spreadsheet.

Equipment Emissions and Fugitive Emissions Determination:

Emissions from equipment leaks will be individually indentified. True fugitive (non-point source) emissions have been determined using equipment component emission factors established by DuPont. The determination of those emissions are shown in a separate section of this supporting documentation.

PVF-2 Process VOC Determination (Emission Source ID Nos. FS-C)

Year 2015

Analytical	Equi	pment	Vent	Flow	Rates
------------	------	-------	------	------	-------

Vent No. FEP-C1 flow rate ($Q_{\text{FEP-C1}}$) Analytical Equipment VOC emissions ($E_{\text{FEP-C1}}$)

1,802	pounds
1,802	pounds

Maintenance Header Vent Flow Rates

Vent No. FEP-C2 flow rate ($Q_{\text{FEP-C2}}$) Maintenance Headers VOC emissions ($E_{\text{FEP-C2}}$)

19,438	pounds
19,438	pounds

Flash Tank Vent Flow Rates

Emissions from Vent No. FEP-C3 flow rate (Q_{FEP-C3}) Flash Tanks VOC emissions ($E_{\text{FEP-C3}}$)

2,824	pounds
2,824	pounds

Fugitive Emissions

Fugitive emissions from FS-C (E_{F-C}) Total fugitive emissions (E_F)

1,886	pounds
1,886	pounds

Accidental Releases

Accidental releases from FS-C (Q_{A-C}) Total accidental releases (E_A)

0	pounds
0	pounds

VOC emissions (E) from the PVF-2 facility

Analytical Equipment VOC emissions ($E_{\text{FEP-C1}}$) Maintenance Headers VOC emissions ($E_{\text{FEP-C2}}$) Flash Tanks VOC emissions ($E_{\text{FEP-C3}}$) Total fugitive emissions (E_{F}) Total accidental releases (E_{A})

•	
1,802	pounds
19,438	pounds
2,824	pounds
1,886	pounds
. 0	pounds
25,950	pounds
12.98	tons

Total VOC emissions (E) from the PVF-2 facility

* Note: VOC emissions are exclusively vinyl fluoride

PVF-2 Process PM Determination (Emission Source ID Nos. FS-C)

Year 2015

Basis and Assumptions:

FEP-C4 (Product Collection System) emissions are based on the operating time and production rate of the baghouse and the bag efficiency. According to the manufacturer, W.L. Gore, the Baghouse bags efficiency rating on 0.3 micron particulate indicates the potential particulate emissions would be 0.488 lb. particulate matter ("PM") per Polymer Production Unit ("PPU"). It is not expected that any particles would be smaller than 0.3 micron.

Determination of Particulate Matter Emissions

Production during reporting year PM Emission Factor

Total PM emissions from the PVF-2 facility

3,202	PPU
0.488	lb-PM / PPU
1,564	pounds
0.78	tons

Completed By:

Christopher A. Chanelli

Date Completed:

January 25, 2016

HFA-Hydrate Reactor System GHG-HDR

(0553)

2015 Air Emissions Inventory Supporting Documentation

Emission Source ID No.: GHG-HDR

Emission Source Description: HFA-Hydrate Destruction Reactor System

Process and Emission Description:

The HFA-Hydrate Destruction Reactor System (HDR) consists of a thermal-alkaline reactor that decomposes HFA-hydrate to trifluoromethane (HFC-23 or fluoroform) and trifluoroacetate. The trifluoroacetate is water soluble and leaves the HDR system in the wastewater stream. The HFC-23 is vented to the atmosphere via the Nafion® Process' main vent stack (NEP-1).

HFC-23 is not a VOC, HAP, or North Carolina TAP. As such, HFC-23 is not a regulated air pollutant. Because of this, the HDR is not listed on the site's Title V Air Permit. Therefore, for the purpose of this report, HFC-23 is reported as a greenhouse gas emission.

Basis and Assumptions:

The basis of the HFC-23 emissions is the formation of HFA-hydrate in the HFPO Process. In the HDR system, the HFA-hydrate is chemically decomposed to HFC-23. Per the HFPO Process flowsheet (W1208078), 0.4 kg of HFC-23 is formed and emitted for every 30.48 HFP Units fed into the HFPO Process. Therefore, the emission of HFC-23 is proportional to the quantity of HFP make-up fed to the HFPO Process. Vent testing of the HFPO Process has established the HFC-23 emission factor for that process. Therefore the emissions of the HFC-23 from the HDR system is simply the difference between the total HFC-23 emissions and the HFPO Process' HFC-23 emissions.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
HFPO Process' fresh HFP make-up	SAP financial records
quantity	

Point Source Emissions Determination:

All air emissions from the HDR system are point source. The estimate of the emission of fluoroform (HFC-23) is given on the following page.

A. Trifluoromethane (CHF₃; fluoroform; HFC-23; R-23) CAS No. 75-46-7

Quantity Generated:

Before-control CHF₃ generation per the process flowsheet (W1208078):

Before-control CHF₃ generation based on

583,653 HFP Units

0.4 kg CHF₃
30.48 HFP Units

x 583,653 HFP Units

7,658 kg CHF₃

16,884 lb. CHF₃

The amount of CF3H emitted from the HFPO Process is based on the before-control CHF3 emissions factor documented in TA NF-11-1824 from the stripper column vent.

0.0114 kg CHF₃ / HFP Units fed to process E_{CE3H}=

Therefore the amount emitted from the HFPO process is:

0.0114 kg CHF₃ x 583,653 HFP Units

6,672 kg CHF₃

1.00 HFP Units

14,709 lb. CHF₃

Therefore the quantity of trifluoromethane emitted from the HFA-hydrate Destruction Reactor System (GHG-HDR) would be the difference between the total CHF3 emissions and the quantity emitted from the HFPO Process (NS-A).

16,884 lb. CHF₃

minus

14,709 lb. CHF₃

2,175 lb. CHF3

1.09 ton CF₃H

Polyvinyl Fluoride Process No. 1 House Vacuum System I-01A

DuPont PVF Manufacturing Facility

Determination of Actual PM-10 Emissions: PVF-1 House Vacuum System

Particulate Matter Emissions Determination

For general good housekeeping purposes, the DuPont PVF-1 Process uses a vacuum system (ID No. PVF-Vac-A) to remove any PVF resin powder (particulate matter) from the building's floor and equipment. The emission of particulate matter from this vacuum system is controlled by a two-stage fabric filter.

The 1st-stage fabric filter (Control Device ID No. CD-PVF-A1) is a TDC Filter QX blended cellulous / synthetic fiber paper filter. Its efficiency for capturing / controlling particles is 48% for 0.3 - 1.0 micron size, 88% for 1.0 - 3.0 micron size, and 99% for 3.0 - 10.0 micron size.

The 2nd-stage fabric filter (Control Device ID No. CD-PVF-A2) is a TDC Filter SB-ME heavy-duty spunbond 100% polyester metalized spunbond filter media with a conductive coating to prevent static buildup. Its MERV Test results shows the filter's efficiency for capturing / controlling particles is 38% for 0.3 - 1.0 micron size, 72% for 1.0 - 3.0 micron size, and 98% for 3.0 - 10.0 micron size.

Determination of before-control particulate matter is based on the conservative estimate of 8,160 lb/yr collected from the 1st-stage filter, the capture efficiencies of that filter, and the particle size distribution of the PVF resin powder.

Results of particle size distribution testing of batches of PVF resin powder during August through October 2013 showed the worst-case situation of 68% being less than 1.0 μ m. To be conservative, assume 70% is less than 1.0 μ m and 30% is greater than 1.0 μ m.

Vendor literature from TDC Filter states the capture / control efficiency of their QX Filter is 48% for particles less than 1.0 μ m and 88% for particles greater than 1.0 μ m.

The quantity of particulate emissions that is captured / controlled by the 1st-stage filter is 8,160 lb. per year and is equal to the following:

DuPont PVF Manufacturing Facility

Determination of Actual PM-10 Emissions: PVF-1 House Vacuum System (continued)

Particulate Matter less than 1.0 µm

```
13,600 lb. PVF X 70% = 9,520 lb. PVF < 1 μm

9,520 lb. PVF X 48% = 4,570 lb. PVF < 1 μm captured / controlled

9,520 lb. PVF X 52% = 4,950 lb. PVF < 1 μm sent to 2nd-stage
```

Vendor literature from TDC Filter states the capture / control efficiency of their SB-ME Filter media is 38% for particles less than 1.0 μm .

```
4,950 lb. PVF \times 38% = 1,881 lb. PVF < 1 \mum captured / controlled 4,950 lb. PVF \times 4 62% = 3,069 lb. PVF < 1 \mum emitted to atmosphere
```

Particulate Matter greater than 1.0 µm

Vendor literature from TDC Filter states the capture / control efficiency of their SB-ME Filter Media is 72% for particles between 1.0 μ m and 3.0 μ m, and 98% for particles greater than 3.0 μ m. To be conservative, it will be assumed the efficiency is 72% for particles greater than 1.0 μ m.

```
490 lb. PVF \times 72% = 353 lb. PVF > 1 \mum captured / controlled 490 lb. PVF \times 28% = 137 lb. PVF > 1 \mum emitted to atmosphere
```

PVF-1 House Vacuum System: Total Annual Actual Particulate Matter Emissions

Total actual PVF resin emissions	_=	3,069 lb. PVF $< 1 \mu m$ emitted to atmosphere
		137 lb. PVF $> 1 \mu m$ emitted to atmosphere
	_	3,206 lb. PVF emitted to atmosphere

Assume vacuum is operated 2 hour/day

4.39 lb/hour Particulate Matter
3,206 lb/year Particulate Matter
1.603 ton/year Particulate Matter

Polyvinyl Fluoride Process No. 2 House Vacuum System I-01B

DuPont PVF Manufacturing Facility

Determination of Actual PM-10 Emissions: PVF-2 House Vacuum System

Particulate Matter Emissions Determination

For general good housekeeping purposes, the DuPont PVF-2 Process uses a vacuum system (ID No. PVF-Vac-B) to remove any PVF resin powder (particulate matter) from the building's floor and equipment. The emission of particulate matter from this vacuum system is controlled by a two-stage fabric filter.

The 1st-stage fabric filter (Control Device ID No. CD-PVF-B1) is a TDC Filter QX blended cellulous / synthetic fiber paper filter. Its efficiency for capturing / controlling particles is 48% for 0.3 - 1.0 micron size, 88% for 1.0 - 3.0 micron size, and 99% for 3.0 - 10.0 micron size.

The 2nd-stage fabric filter (Control Device ID No. CD-PVF-B2) is a TDC Filter SB-ME heavy-duty spunbond 100% polyester metalized spunbond filter media with a conductive coating to prevent static buildup. Its MERV Test results shows the filter's efficiency for capturing / controlling particles is 38% for 0.3 - 1.0 micron size, 72% for 1.0 - 3.0 micron size, and 98% for 3.0 - 10.0 micron size.

Determination of before-control particulate matter is based on the conservative estimate of 8,160 lb/yr collected from the 1st-stage filter, the capture efficiencies of that filter, and the particle size distribution of the PVF resin powder.

Results of particle size distribution testing of batches of PVF resin powder during August through October 2013 showed the worst-case situation of 68% being less than 1.0 μ m. To be conservative, assume 70% is less than 1.0 μ m and 30% is greater than 1.0 μ m.

Vendor literature from TDC Filter states the capture / control efficiency of their QX Filter is 48% for particles less than 1.0 μ m and 88% for particles greater than 1.0 μ m.

The quantity of particulate emissions that is captured / controlled by the 1st-stage filter is 8,160 lb. per year and is equal to the following:

Uncontrolled Emissions	Fraction < 1 µm	Efficiency +	Uncontrolled Emissions	Fraction > 1 μm	Efficiency > 1 µm
Uncontrolled Emissions	X 70% X 4	3% + Unco	ontrolled x 30%	% X 88%	= 8160 lb.
Uncontrolled Emissions	= 70%	8,160 X 48% +	1b. 30% X 88%	= 13,600	lb. PVF

DuPont PVF Manufacturing Facility Determination of Actual PM-10 Emissions: PVF-2 House Vacuum System (continued)

Particulate Matter less than 1.0 µm

Vendor literature from TDC Filter states the capture / control efficiency of their SB-ME Filter media is 38% for particles less than $1.0~\mu m$.

```
4,950 lb. PVF X 38% = 1,881 lb. PVF < 1 \mum captured / controlled 4,950 lb. PVF X 62% = 3,069 lb. PVF < 1 \mum emitted to atmosphere
```

Particulate Matter greater than 1.0 µm

Vendor literature from TDC Filter states the capture / control efficiency of their SB-ME Filter Media is 72% for particles between 1.0 μ m and 3.0 μ m, and 98% for particles greater than 3.0 μ m. To be conservative, it will be assumed the efficiency is 72% for particles greater than 1.0 μ m.

```
490 lb. PVF \times 72% = 353 lb. PVF > 1 \mum captured / controlled 490 lb. PVF \times 28% = 137 lb. PVF > 1 \mum emitted to atmosphere
```

PVF-2 House Vacuum System: Total Annual Actual Particulate Matter Emissions

Total actual PVF resin emissions	= 3	3,069 lb. PVF < 1 μm emitted to atmosphere
	· · · · · ·	137 lb. PVF $> 1 \mu m$ emitted to atmosphere
	3	3,206 lb. PVF emitted to atmosphere

Assume vacuum is operated 2 hour/day

4.39 lb/hour Particulate Matter
3,206 lb/year Particulate Matter
1.603 ton/year Particulate Matter

Waste DMSO Storage Tank I-02

AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No.: 1-02

Emission Source Description: Waste DMSO Storage Tank

Process Description:

This tank is used as an intermediate storage space for disposal of DMSO (dimethyl sulfoxide) offsite. DMSO is used in the Hydrolysis process and can not currently be disposed of onsite. When the material in Hydrolysis can no longer be used for the process, the chemical is transferred to the Waste DMSO Storage Tank. From this tank, the waste DMSO solution is pumped to the facility's NPDES permitted wastewater treatment plant for disposal. The tank is vents to the atmosphere through a gooseneck pipe with a conservation vent coming off the top that ends 12" above the diked area.

Basis and Assumptions:

- Direct vent to atmosphere
- Tank volume = 6000 gallons or 802 ft³
- DMSO vapor pressure = 0.46 mm Hg @ 20°C
- Molar volume of an Ideal Gas @ 0° C and 1 atm = 359 ft³/(lb-mole)
- Molecular Weight of DMSO = 78 (78 lb DMSO / lb-mole DMSO)
- Assume one complete tank volume turnover per day for point source emissions.
- Assume "Good" Emission Factor on Equipment Leaks for fugitive emissions (See Appendix A).
- Flange emissions were used for all equipment except valves and pumps.

Information Inputs and Source of Inputs:

Information	Source
Waste DMSO generated (lb/yr)	Waste Shipping Specialist, Global Supply Support
Vapor pressure	CAS Number 67-68-5
Tank volume	Procedure PR-70, W1535321, or NBPF000351
Number of Each Type of Equipment	W1535321 and verifying at source
% Production / Quarter	Master Production Scheduler via SAP BW Reporting

Dimethyl sulfoxide (DMSO)

CAS No. 67-68-5

Point Source Emissions Determination:

Vapor pressure of DMSO = 0.46 mm Hg at 20°C

Mole fraction DMSO in vapor (using Dalton's law):

Mole fraction DMSO =
$$\underline{\text{Vapor pressure DMSO}}$$
 = $\underline{\text{0.46 mm Hg}}$ = $\underline{\text{0.000605 mole DMSO}}$ Total pressure in tank $\underline{\text{760 mm Hg}}$ = $\underline{\text{0.000605 mole DMSO}}$ mole gas in tank

Molar volume at 0° C and 1 atm = 359 ft³ \Rightarrow Molar volume at 20° C and 1 atm = 385 ft³

Pounds of DMSO per tank volume:

Total DMSO emissions per year from tank volume:

$$\frac{0.098 \text{ lb DMSO}}{\text{tank volume}}$$
 * $\frac{1 \text{ tank volume}}{\text{day}}$ * $\frac{365 \text{ days}}{\text{year}}$ * $\frac{1 \text{ ton}}{2000 \text{ lbs}}$ = 0.018 ton DMSO / yr

Fugitive Emissions Determination:

Equipment Component	Number of Components	Good Factor (lb/hr/component)	Emissions (lb/hr)	Emissions (ton/yr)
Pump Seal	1	0.0075	0.0075	0.033
Heavy Liquid Valve	20	0.00352	0.0704	0.308
Open-ended Line	1	0.0215	0.0215	0.094
Flange/Connection	9	0.00031	0.00279	0.012
		•	Total	0.447

Good factor (lb/hr/component) × Number of Components = Emissions (lb/hr)

Emissions (lb/hr) \times 1 ton / 2000 lbs \times 24 hr/day \times 365 days/year = Emissions (ton/yr)

Total fugitive DMSO emissions per year = 0.447 ton DMSO / year

Emissions Summary:

Point Source Emissions + Fugitive Emissions = Total Emissions

0.018 ton DMSO / year + 0.447 ton DMSO / year = **0.47 ton DMSO / year**

APPENDIX A: FUGITIVE EMISSION LEAK RATES FOR PROCESS EQUIPMENT

Fugitive emission studies have been done on a number of DuPont facilities and the measurements were considerable lower than emission factors recommended by the EPA for SOCMI chemical processes. These screening and bagging data have been used to establish "typical" emission factors from DuPont facilities. The data separated into three categories of emission levels for "as found" emissions form plants who were not involved in LDAR programs.

As a result of this effort, three sets of DuPont factors were developed: "superior", "excellent", and "good." The superior factors are typical of processes that contain extremely hazardous materials, i.e. phosgene (COC1₂), chlorine (C1₂), and hydrogen fluoride (HF). A set of example questions to help guide DuPont sites as to when to use the different categories was also developed and is discussed in the next section. The three categories represent the range found at DuPont facilities, but still are much lower than EPA SOCMI factors. All three sets of factors are listed below.

	·	EMMISION FACTORS (lb/hr/component)				
COMPONENT	SERVICE	SUPERIOR	EXCELLENT	GOOD	EPA SOCMI	
Pump Seals	Light Liquid	.xxxxx	0.00115	0.0075	0.109	
Pump Seals	Heavy Liquid	.xxxxx	0.00115	0.0075	0.047	
Valves	Gas	.xxxxx	0.00039	0.00549	0.012	
Valves	Light Liquid	.xxxxx	0.00036	0.00352	0.016	
Valves	Heavy Liquid	.XXXXX	0.00036	0.00352	0.00051	
Pressure Relief Seals	Gas/Vapor	.xxxxx	0.00012	0.00013	0.23	
Open Ended Lines	All	.xxxxx	0.001	0.0215	0.0037	
Flanges	All	.xxxxx	0.00018	0.00031	0.0018	
Sampling Connections	All	.xxxxx	0.00018	0.00031	0.033	
Compressor Seals	Gas/Vapor	N/A	N/A	N/A	0.50	
Overall Emission Factor		1/10,000	1/20	1/3	1/1	

Heavy liquid means a liquid with a true vapor pressure of less than 0.3 kPa (0.04 psia) at a temperature of 294.3 °K (70 °F); or which has 0.1 Reid Vapor Pressure; or which when distilled requires a temperature of 421.95 °K (300 °F); or greater to recover 10 percent of the liquid as determined by ASTM method D86-82.

Light liquid means a liquid that is not a heavy liquid.

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No.:

I-03

Emission Source Description:

Fugitive emissions of Methylene Chloride

Process & Emission Description:

Methylene Chloride is used as a heat exchanging fluid in many of the Fluoromonomers and Nafion Membrane processes. It is a closed loop system. All emissions from this system are a result of equipment leaks or spills.

Basis and Assumptions:

A material balance is used for calculating fugitive emissions.

Information Inputs and Source Inputs:

Information Input	Source of Inputs
Methylene Chloride Emissions	SARA 313 Report from Waste Shipment Clerk

Point Source Emissions Determination:

None

Fugitive Emissions Determination:

Shown on the following page.

Emission Source ID No.:

I-03

Emission Source Description:

Fugitive Emissions of Methylene Chloride

	1Q15	2Q15	3Q15	4Q15	TOTAL
Methylene Chloride Losses (lb)	13,121	4,002	553	4,018	21,694

Chlorination of Riverwater to Control Mussel Growth in Equipment I-04

Emission Source ID No.: I-04

Emission Source

Chlorination of Riverwater to Control Mussel Growth in

Description:

Equipment

Sodium Hypochlorite^a (as Chlorine) Fugitive Emissions (Equipment Leaks)

Equipment Component	Total Compo- nents	EPA SOCMI b (kg/hr/ component)	Service (hr/yr)	Emissions (kg/yr)	Emissions (lb/yr)
Pump Seals in light liquid service	1	0.0199	8760	174.3	384
Valves in light liquid service	1	0.00403	8760	35.3	78
Connections in light liquid service	33	0.00183	8760	529.0	1,166

Total Emissions as Chlorine	564	1.628

Note a: Sodium hypochorite has a vapor pressure of 17 mmHg (2.26 Kpa) at 20 degrees C. Per 40 CFR 63 Subpart H, "light liquid service" means equipment whose contents have a vapor pressure of greater than 0.3 kilopascals at 20 degrees C. Therefore, for the purpose of determining fugitive emissions from the river water chlorination system, the soduim hypochlorite equipment is considered to be in "light liquid service" even though sodium hypochlorite is not an organic compound.

Note b: Source: EPA, November 1995, Table 2-1.

Sitewide Laboratory Emissions I-05

Emission Source ID No.: I-05

Emission Source Description: Sitewide Laboratory Emissions

Process and Emission Description:

The Chemours Company - Fayetteville Works has several laboratories located throughout the site. The use of normal laboratory chemicals result in assumed emissions of these compounds.

Basis and Assumptions:

The amount of the laboratory chemicals used in the various laboratories is not easily quantified due to the current procurement procedures. In previous years these quantities could and were determined. During those years, it was assumed that 100% of the laboratory chemicals purchased were emitted as air emissions.

To be conservative, it will be assumed that the annual emission of laboratory chemicals is the summation of the emissions that occurred in the four (4) year period from 2003 to 2006.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Total pounds of laboratory chemicals	Assumed conservative high estimates
reported from 2003 through 2006.	

Point Source Emissions Determination:

For the purpose of this report, it is assumed that all emissions are point source via the lab hoods.

Equipment Emissions and Fugitive Emissions Determination:

For the purpose of this report, it is assumed that all emissions are point source via the lab hoods.

Emission Source ID No.: I-05

Emission Source Description: Sitewide Laboratory Emissions

VOC Emissions Determination

The emission of VOC is determined by summing the total laboratory emissions reported in the air emissions inventories from 2003 to 2006.

The Chemours Company - Fayetteville Works has several laboratories located throughout the site. The use of normal laboratory chemicals result in assumed emissions of these compounds.

2003-2006 Summation Sitewide Laboratory Chemicals

Compounds	2003	2004	2005	2006	48-month Total
Acetic Acid	252	258		403	913
Acrolein		1			1
Benzene	1	2		2	5
Bromine		17	9		26
Chloroform			1		: 1
Ethyl Acetate	, 5		12		17
Ethylene Dichloride	262	132		147	541
Hydrogen Chloride		80	15		95
n-Hexane			3		3
Nitric Acid	22	87			109
Toluene		31			31
					1,742

Total VOC emissions would be the sum of the above compounds except for bromine, hydrogen chloride, and nitric acid.

Total VOC emissions	1,512 lb. VOC
	0.756 tons VOC

Outdoor Abrasive Blasting Operation for Items Exceeding 8-Feet in Any Dimension

I-06

Emission Source ID No.:

I-06

Emission Source Description:

Outdoor abrasive blasting operation for items exceeding 8-

feet in any dimension

Process and Emission Description:

The Chemours Company - Fayetteville Works has a free-standing structure that is used to abrasive blast large metal parts prior to painting.

Basis and Assumptions:

The abrasive blasting activity in this structure is infrequent. Purchasing records of the abrasive media used in this operation is the basis of the abrasive media consumption.

Per the AP-42 Section 13.2.6 particulate emission factors for abrasive blasting of mild steel panels with a five mile per hour wind speed, total particulate matter emissions would be 27 pounds per 1,000 pounds of abrasive. The choice of this low wind speed is appropriate since the blasting operation is conducted inside an enclosure.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Total pounds of abrasive media	Fluor Daniels personnel responsible for the
	abrasive blasting operation.

Point Source Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Equipment Emissions and Fugitive Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Emission Source ID No.:

I-06

Emission Source Description:

Outdoor abrasive blasting operation for items exceeding 8-feet

in any dimension

PM Emissions Determination

The emission of particulate matter is determined by multiplying the total estimate of abrasive media consumed by the AP-42 Section 13.2.6 particulate emission factors.

AP-42 Section 13.2.6 particulate emission factors for abrasive blasting of mild steel panels with a five mile per hour wind speed 27 pounds total particulate matter (PM) emissions per 1,000 pounds of abrasive

Input:

	,
Abrasive media consumed during reporting year	4,000 pounds

$$\frac{4,000 \text{ lb. abrasive}}{\text{year}} \quad \times \quad \frac{27 \text{ lb. PM}}{1,000 \text{ lb. abrasive}} = \frac{108 \text{ lb. PM}}{\text{year}}$$

$$= \frac{0.05 \text{ ton PM}}{\text{year}}$$

Pollutant	Emissions (ton/year)
Particulate Matter (TSP)	0.05
PM ₁₀ (< 10 micron)	0.05
PM _{2.5} (< 2.5 micron)	0.05

Paint Shop I-07

Emission Source ID No.: I-07

Emission Source Description: Paint Shop

Process and Emission Description:

The Chemours Company - Fayetteville Works operates a Paint Shop in which product cylinders and assorted metal parts are painted.

Basis and Assumptions:

The painting activity at this source is fairly frequent. Most of the painting is of the Fluoromonomer product cylinders. The basis of the emissions determination is the historical actual consumption records of paints and primers used at this source.

This activity results in very low overall emissions of both VOC and HAP/TAP emissions. In addition, the type and brand of paints consumed varies dramatically each year. As such, the effort to accurately quantify and qualify the emissions from this activity is much greater than the relative scale of the emissions.

Therefore, a conservative approach will be used to determine the air emissions, in which it will be assumed that all the paint consumed was 100% VOC by mass, that all of the paints' density is 12.71 lb/gal which is the greatest known density of a previously used paint, and that each paint has the highest concentration of HAP/TAP of any previously used paint.

During the period from 2008 through 2014, the Paint Shop averaged 681 gallons per year. Therefore, to be conservative it will be assumed that 750 gallons of the above described worst-case paint was consumed during the reporting year.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Total gallons of paint consumed	KBR personnel responsible for the Paint
	Shop

Point Source Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Equipment Emissions and Fugitive Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Emission Source ID No.: I-07

VOC Emissions Determination

Worst-case Desity of Paint

12.71 lb/gal

Worst-case VOC Content

100%

Paint Consumed in Year

750 gallons (assumed)

750 gal. paint X 12.7 lb. paint

(1.0 lb. VOC

9,533 lb. VOC

= 4.77 ton VOC

HAP / TAP Emissions Determination

		Volume of	Worst-	Mass of
HAP / TAP	Worst-	Paint	case *	HAP/TAP
	case *	Consumed	Density	Emitted
	Conc.	(gal)	(lb/gal)	(lb)
Ethyl benzene	24.6%	750	12.71	2,345
Methyl ethyl ketone	10.0%	750	12.71	953
Toluene	17.0%	750	12.71	1,621
Xylene	30.0%	750	12.71	2,860
Hexamethylene-diisocyanate	0.2%	750	12.71	19
Ethylene glycol	2.0%	750	12.71	191

- * Worst-case HAP / TAP concentration is based on the following paints:
 - DuPont T-8805 Thinner contains 24.6% ethyl benzene
 - Krylon Orange contains 10.0% methyl ethyl ketone
 - Krylon Acrylic Spray contains 17.0% toluene
 - Krylon Orange contains 30.0% xylene
 - DuPont Imron Accelerator 389-S contains 0.2% hexamethylene diioscyanate
 - Latex Exterior Paint contains 2.0% ethylene glycol

Self-Contained Abrasive Blasting Cabinets I-08

Emission Source ID No.:

I-08

Emission Source Description:

Abrasive Blasting Cabinets

Process and Emission Description:

The Chemours Company - Fayetteville Works has several self-contained abrasive blasting cabinets located throughout the site. The function of these cabinets is to perform abrasive blasting of metal parts prior to painting.

Basis and Assumptions:

The abrasive blasting activity in these cabinets is very infrequent. Some cabinets are used once or twice a year. However, for the purposes of this air emissions inventory, it will be assumed that a extremely conservative high estimate exists where one ton of abrasive media is consumed in each cabinet each month.

Per the AP-42 Section 13.2.6 particulate emission factors for abrasive blasting of mild steel panels with a five mile per hour wind speed, total particulate matter emissions would be 27 pounds per 1,000 pounds of abrasive. The choice of this low wind speed is appropriate since the blasting operation is conducted inside a cabinet.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Total pounds of abrasive media	Assumed conservative high estimates

Point Source Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Equipment Emissions and Fugitive Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Fugitive Emission Determination

PM Emissions Determination

The emission of particulate matter is determined by multiplying the total estimate of abrasive media consumed by the AP-42 Section 13.2.6 particulate emission factors.

AP-42 Section 13.2.6 particulate emissio	n
factors for abrasive blasting of mild steel	
panels with a five mile per hour wind spe	ed

27 pounds total particulate matter emissions per 1,000 pounds of abrasive

Assumptions:

Abrasive Blasting Cabinets on-site	4 cabinets
Abrasive consumed per cabinet	1 ton / month
Abrasive consumed per cabinet	12 ton/year
Sitewide abrasive consumed	48 ton/year

$$\frac{48 \text{ tons abrasive}}{\text{year}} \quad X \quad \frac{27 \text{ ton PM}}{1,000 \text{ ton abrasive}} = \frac{1.3 \text{ ton PM}}{\text{year}}$$

Pollutant	Emissions (ton/year)
Particulate Matter (TSP)	1.3
PM ₁₀ (< 10 micron)	1.3
PM _{2.5} (< 2.5 micron)	1.3

Paint Spray Booths I-09

Emission Source ID No.:

I-09

Emission Source Description:

Spray Paint Booths

Process and Emission Description:

The Chemours Company - Fayetteville Works has several small paint booths located throughout the site. The function of these spray booths is to perform occasional painting of metal parts using aerosol spray cans.

Basis and Assumptions:

The painting activity in these spray booths is very infrequent. Some spray paint booths are used once or twice a year. However, for the purposes of this air emissions inventory, it will be assumed that a extremely conservative high estimate exists:

- (1) While most if not all of the paint spray booths are used less than one day per month, it will be assumed that each spray booth has five (5) aerosol cans of paint emptied into it each day, five days per week.
- (2) Most commercial spray paints contain 60% to 65% VOC. However, for the purpose of this report, it will be assumed that the paint is 100% VOC by weight.
- (3) To account for the emission of hazardous air pollutants, it will be assumed that the paint contains the highest concentration of the individual HAPs per the Material Safety Data Sheets for Krylon and Rust-oleum paints.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Total pounds of paint, VOC content, and	Assumed conservative high estimates
HAP content	

Point Source Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Equipment Emissions and Fugitive Emissions Determination:

For the purpose of this report, it is assumed that all emissions are fugitive.

Emission Determination

VOC Emissions Determination

Spraybooths on-site	4 spraybooths
Cans of paint per day per booth	5 cans / day / booth
Cans of paint per day	20 cans / day
Net weight of contents per can	0.75 pounds
Weight of paint per day	15 lb. paint / day
Days per week spraybooth is used	5 days / week
Days per year spraybooth is used	260 days / year
Weight of paint per year	3,900 lb. paint / year
VOC content of paint	100% VOC content
Weight of VOC per year (lb.)	3,900 lb. VOC / year
Weight of VOC per year (ton)	1.95 tons VOC / year

HAP Emissions Determination

The emission of hazardous air pollutants is determined by multiplying the total estimate of paint consumed by the HAP content of the paint.

Example: Determination of the emission of ethyl benzene

Hazardous Air Pollutant	CAS Number	HAP Content	Total Emissions (lb)
Ethyl benzene	100-41-4	5%	195
Methyl ethyl ketone	78-93-3	2%	78
Toluene	108-88-3	45%	1,755
Xylene	1330-20-7	25%	975

Dispersion Process I-12

Nafion Dispersions Process (I-12)

Product	Amount (L)
D0521	0
D520	117
D521	1,605
D1020	0
D1021	472
D1031	0
D2020	1,462
D2021	137
D2029	21
D2820	0

TOTAL	3,814

Vapor density of n-propanol = 2.46 g/l

Assume containers are filled with 100% n-propanol vapor at start of filling.

Then emissions are the displaced headspace of the containers as a result of their filling.

$$\frac{3,814 \text{ Liters}}{\text{year}} \times \frac{2.46 \text{ grams NPA}}{\text{Liter}} = \frac{9,369 \text{ grams}}{\text{year}}$$

$$= \frac{21 \text{ lb. VOC}}{\text{year}}$$

$$= \frac{0.01 \text{ ton VOC}}{\text{year}}$$

Hexfluoropropylene Oxide (HFPO) Process NS-A

2015 Emissions NS-A

HFPO Manufacturing Process (NS-A) Emission Summary Page 1 of 1

Emission Summary

A. VOC Compound Summary

Nafion® Compound	CAS Chemical Name	CAS No.	Point Source and Non-point Source Emissions	Accidental Emissions	Total Emissions
COF2	Carbonyl Fluoride	353-50-4	547	0	547
PAF	Trifluoroacetyl Fluoride	354-34-7	556	0	556
A/F Solvent (TFF)	Perfluoro-3,5,7,9,11-pentaoxadodecanoyl fluoride	690-43	1,045	0	1,045
A/F Solvent (TAF)	Trifluoromethyl ester of carbonofluoridic acid	3299-24-9	1,584	0	1,584
HFP	Hexafluoroproplyene	116-15-4	49,439	0	49,439
HFPO	Hexafluoroproplyene Epoxide	428-59-1	29,022	5	29,027
Benzene	Benzene	71-43-2	ဇ	0	ო
Toluene	Methylbenzene	108-88-3	155	_	156
			Total VOC	Total VOC Emissions (lbs)	82,357
			Total VOC E	Total VOC Emissions (tons)	41.18

B. Toxic Air Polluntant Summary

Nafion® Compound	CAS Chemical Name	CAS No.	Point Source Emissions (Ib.)	Non-pt Source Emissions (Ib.)	Accidental Emissions (lb.)	Total Emissions (lb.)
Benzene	Benzene	71-43-2		က	0	က
Fluorides (as HF)	Fluorides (sum of all fluoride compounds)	16984-48-8	1,218	100	0	1,317
±±	Hydrogen Fluoride	7664-39-3	1,218	100	0	1,317
Methylene Chloride	Aethylene Chloride Methylene Chloride	75-09-2	0	0	0	0
Toluene	Methylbenzene	108-88-3		155	1	155

C. GHG Pollutants Summary

Nafion®	CAS Chemical Name	CAS No.	Point Source Emissions	Total Emissions	Total Emissions
niinodiiio			(lb.)	(lb.)	(ton)
CO2	Carbon Dioxide	124-38-9	106,308	106,308	53.15
Fluoroform	Trifluoromethane (HFC-23)	75-46-7	14,709	14,709	7.35

(051)

Point Source Emission Determination

A. Carbonyl Fluoride (COF₂)

CAS No. 353-50-4

HF Potential:

Each mole of COF₂ (MW = 66) can generate 2 moles of HF (MW = 20).

$$1 lb COF_{2} \cdot \frac{1 moleCOF_{2}}{66 lb COF_{2}} \cdot \frac{20 lb HF}{1 moleHF} \cdot \frac{2 molesHF}{1 moleCOF_{2}} = 0.606 lb HF$$

Therefore, each 1 lb of COF2 generates

0.606 lb of HF

Quantity Generated:

Before-control COF2 generation:

Vented from A/F Column: From "Vent Flows" Tab = Total AF column vent flow [lb] * Average COF2 mass fraction in AF column vent [lb COF2/lb]

222,773.43

0.4715 = 105,038 lb COF2

Vented from Stripper Column: From "Vent Flows" Tab = Total Stripper col vent flow [lb] * Average COF2 mass fraction in Stripper column vent [lb COF2/lb]

234,240.56 X 0 =

0 lb COF2

Vented from Solvent Recycle

Tank: From "Vent Flows" Tab = Total Solvent tank vent flow [lb] * Average COF2 mass fraction in Solvent tank vent [lb COF2/lb]

408,275.44

0 lb COF2

COF₂ sent to VE-South Process when VE-S shutdown (from "VE-S Flow" Tab):

8,418 lb COF2

Total COF₂ Emitted from Process =

(sent to WGS)

105,038 lb COF₂ from A/F Column

0 lb COF₂ from Stripper Column

0 lb COF₂ from Solvent Recycle Tank

+ 8,418 lb COF₂ sent to VE-South Process when VE-S shutdown

113,456 lb COF₂ sent to WGS

After-control emissions utilizing the Waste Gas Scrubber (WGS):

Efficiency=

99.10%

VOC Emissions

113,456 lb COF₂

Waste Gas Scrubber

0.90% 454 lb COF₂ (VOC)

HF Equivalent Emissions

454 lb COF₂

x 0.606 lb HF/lb COF₂

= 275 lb HF (Equivalent HF)

· V

B. Perfluoroacetyl Fluoride (PAF)
Trifluoroacetyl Fluoride (CF3COF)

CAS No. 354-34-7

HF Potential:

Each mole of PAF (MW = 116) can generate 1 mole of HF (MW = 20).

$$1 lb PAF \cdot \frac{1 mole PAF}{116 lb PAF} \cdot \frac{20 lb HF}{1 mole HF} \cdot \frac{1 mole HF}{1 mole PAF} = 0.172 lb HF$$

Therefore, each 1 lb of PAF generates

0.172 lb of HF

Quantity Generated:

Before-control PAF vented

Vented from A/F Column: From "Vent Flows" Tab = Total AF column vent flow [ib] * Average PAF mass fraction in AF column vent [ib PAF/ib] 222,773.43 X 0.5009 = 111,587 lb PAF

Vented from Stripper Column: From "Vent Flows" Tab = Total Stripper column vent flow [lb] * Average PAF mass fraction in Stripper column vent [lb PAF/lb] 234,240.56 X 0.0038 = 890 lb PAF

Vented from Solvent Recycle From "Vent Flows" Tab = Total Solvent tank vent flow [lb] * Average PAF mass fraction in Solvent tank vent [lb PAF/lb] 408,275.44 X 0 = 0 lb PAF

PAF sent to VE-South Process when VE-S shutdown (from "VE-S Flow" Tab):

7,155 lb PAF

Total COF₂ Emitted from Process = (sent to WGS)

111,587 lb PAF from A/F Column 890 lb PAF from Stripper Column .0 lb PAF from Solvent Recycle Tank

+ 7,155 Ib PAF sent to VE-South Process when VE-S shutdown
119,633 Ib PAF sent to WGS

After-control emissions utilizing the Waste Gas Scrubber (WGS):

Efficiency= 99.10%

VOC Emissions

Waste Gas Scrubber x

0.90% 479 lb PAF (VOC)

119,633 lb PAF

HF Equivalent Emissions

479 lb PAF 0.172 lb HF/lb PAF 82 lb HF (Equi

= 82 lb HF (Equivalent HF)

C. Acid Fluoride Solvent - mixture of TAF and TFF Perfluoro-3,5,7,9,11-pentaoxadodecanoyl fluoride (TFF) Trifluoromethyl ester of carbonofluoridic acid (TAF)

CAS Nos. 690-43-7 3299-24-9

HF Potential:

The acid fluoride solvent is a mixture of telomeric acid fluorides (TAF) and telomeric fluoroformates (TFF). TAF behaves as typical acid fluorides, however an average molecular weight must be used since chain length varies.

Each mole of TAF (avg MW = 330) can generate one mole of HF (MW = 20).

$$1 lb TAF \cdot \frac{1 mole TAF}{330 lb TAF} \cdot \frac{20 lb HF}{1 mole HF} \cdot \frac{1 mole HF}{1 mole TAF} = 0.0606 lb HF$$

Therefore, each 1 lb of TAF generates

0.061 kg of HF

Telomeric Fluoroformates break down into multiples of COF₂ (MW = 66), which in turn generate 2 moles of HF (MW =20). Using n=4 would mean for every mole of TFF, 6 moles of COF2 can be generated. MW of n=4 TFF is 396. Most TFF is believed to be of chain length less than n=4 based on recent analysis.

$$1 lb TFF \cdot \frac{mole TFF}{396 lb TFF} \cdot \frac{6 mole COF_2}{1 mole TFF} \cdot \frac{20 lb HF}{1 mole HF} \cdot \frac{2 moles HF}{1 mole COF_2} = 0.606 lb HF$$

Therefore, each 1 lb of TFF generates

0.606 lb of HF

For the purpose of HF Potential, it will be conservatively assumed that all of the Acid Fluoride Solvent is TFF, since the potential HF is greater.

Quantity Generated:

The only processs vent where TAF/TFF may be vented to atmosphere is the solvent recycle tank vent.

Before-control Acid Fluoride solvent (AF) vented

Vented from Solvent Recycle

Total Solvent tank vent flow [lb] * Average AF mass fraction in Solvent tank vent [lb AF/lb]

From "Vent Flows" Tab =

408,275.44

0.8691 =

354,832 lb TAF/TFF

Total AF Emitted from Process =

(sent to WGS)

354,832 lb AF sent to WGS

Х

After-control emissions utilizing the Waste Gas Scrubber (WGS):

Efficiency=

(VOC)

99.10%

VOC Emissions

Waste Gas Scrubber

354,832 lb AF 0.90%

1,419 lb total AF

69% TAF and 31% TFF, based on May 2012 estimate

VOC Emissions

For TFF:

109,998 lb TFF 31% TFF

x 0.90% Waste Gas Scrubber

= 440 lb TFF

440 lb VOC

For TAF:

244,834 Ib TAF 69% TAF

x_ 0.90% Waste Gas Scrubber

979 lb TAF

979 lb VOC

HF Equivalent Emissions

As explained above, assume all solvent is TFF for conservative calculation of HF generation.

1,419 lb AF solvent, assumed all TFF X

0.606 lb HF/lb TFF =

860 lb. HF

D. Hexafluoroproplyene (HFP)

CAS No. 116-15-4

HF Potential:

HFP is a VOC without the potential to form HF.

Quantity Released: Total AF column vent flow [lb] * Average HFP mass fraction in AF column vent [lb HFP/lb] Vented from A/F Column: 4,300 lb HFP From "Vent Flows" Tab = 0.0193 Total Stripper column vent flow [lb] * Average HFP mass fraction in Stripper column vent [lb HFP/lb] Vented from Stripper Column: From "Vent Flows" Tab = 234,240.56 0.1112 Total Solvent tank vent flow [lb] * Average HFP mass fraction in Solvent tank vent [lb HFP/lb] Vented from Solvent Recycle 3,225 lb HFP From "Vent Flows" Tab = 408.275.44 0.0079 310 lb HFP HFP sent to VE-South Process when VE-S shutdown (from "VE-S Flow" Tab): Additional HFP is emitted from the unloading of HFP, specifically the decontamination of hoses and compressor after each trailer is unloaded. The decontamination involves venting the contents of the two hoses and compressor piping to the WGS. Each hose is 2" diameter x 20 feet long. Volume of each hose = 753.98 in³ = The density of HFP liquid at 16C is 1.42 kg/L Determined from physical property data The density of HFP vapor at 16C is 0.0281 kg/L Determined by ideal gas law @ 16C and vapor press of 450 kPa abs. (pressure from H27457PG on iso container, after H27451HV closes) HFP vented from Liquid Hose: (assumes hose volume is filled with liquid) Volume of hose X liquid density = 17.54 kg from Liquid Hose HFP vented from Vapor Hose: (assumes hose volume is filled with vapor) 0.35 kg from Vapor Hose Volume of hose X vapor density = There is an additional estimated 20' of 1 1/2" piping between the hose and 27460HV, also decontaminated, volume = 7 L HFP vented from vapor piping= 7 L X vapor density = 0.20 kg from Vapor Piping HFP vapor vented from compressor & associated piping Suction bottle volume is 30.2 L, typical temperature is 27C and pressure is 270 kPa(g) at time of decontamination. 0.0223 kg/L Determined by ideal gas law @ 27C and 371.3 kPa (a) Vapor density of HFP= Reference H27454TG & H27453PG Additional vapor in 10' of 1" diameter pipe, estimated volume is 1.5 L. Total volume is 31.7 L Suction side volume X vapor density= 0.71 kg Discharge bottle volume is 30.2 L, typical temperature is 37C, 370 kPa (g) at time of decontamination. Determined by ideal gas law @ 37C and 471.3 kPa (a) Vapor density of HFP= 0.0274 kg/L Reference H27456TG & H27455PG Discharge side volume x vapor density= 0.83 ka 1.54 kg from Compressor & Piping Total volume form compressor & piping = The number of decontamination events required is based on the HFP consumed divided by the typical transfer amount, rounded up. 3,032,751 13,500 Total HFP from decontamination of unloading hoses = Number of events * (vented from liquid hose + vapor hose + compressor + piping) 4.410 kg HFP 20 9,722 lb HFP from hose decon

HFP is also vented from the Crude Dryers each time a dryer is changed. The basis for this calculation assumes the composition of vapor 50 %HFP and in the dryer is 50 %HFPO,

and the vapor density is

3.3 lb/ft3 (reference ASPEN model)

The molecular sieves have a bulk density of

47 lb per ft3 of bed volume 57 lb per ft3 according to a recent Certificate of Analysis.

The density of the sieves themselves is Therefore the void fraction of a bed of sieves would be

0.175 ft3 void volume per ft3 total bed volume

From BPF dimensions of the dryer, it is estimated that 10' height of 10" diameter space is filled with sieves, plus 2' of a 6" diameter section. The remaining space at the top containing no sieves consists of 6" high x 10" diameter section plus a 8" high x 6" dia. section.

Vapor volume in dryer=

1.429 ft3 of vapor

X vapor density of

3.3 lb/ft3

Dryer changes occur every

4.72 lb VOC vapor released per dryer change

48 hours. The number of dryer changes is estimated to be

347 lb HFP

HFP vented = %HFP x lb of VOC per dryer change x number of dryer changes in the year=

After-control emissions from the Waste Gas Scrubber with an assumed efficiency of zero percent (0%) (HFP is not scrubbed out)

VOC Emissions

4,300 lb HFP from A/F Column 26,048 lb HFP from Stripper Column 3,225 lb HFP from Solvent Recycle Tank 9,722 lb HFP from Unloading Hoses 347 lb HFP from crude dryer changes 310 lb HFP sent to VE-South Process when VE-S shutdown

43,951 lb HFP

43,951 lb VOC

E. Hexafluoroproplyene Oxide (HFPO)

CAS No. 428-59-1

HF Potential:

HFPO is a VOC without the potential to form HF.

Quantity Released: Vented from A/F Column: Total AF column vent flow [lb] * Average HFPO mass fraction in AF column vent [lb HFPO/lb] From "Vent Flows" Tab = 222,773.43 423 lb HFPO 0.0019 Vented from Stripper Column: Total Stripper col vent flow [lb] * Average HFPO mass fraction in Stripper column vent [lb HFPO/lb] From "Vent Flows" Tab = 234,240,56 Х 0.0496 11,618 lb HFPO Total Solvent tank vent flow [lb] * Average HFPO mass fraction in Solvent tank vent [lb HFPO/lb] Vented from Solvent Recycle From "Vent Flows" Tab = 408,275.44 0.0216 8,819 lb HFPO HFPO sent to VE-South Process when VE-S shutdown (from "VE-S Flow" Tab): 30 lb HFPO Additional HFPO is emitted from the decontamination of hoses after each HFPO ISO is loaded. The decontamination involves venting the contents of the two hoses to the WGS via a service manifold. The liquid hose is 1" diameter x 20 feet long. The vapor hose is 0.5" diameter x 20 feet long. (BPF 346333). Volume of liquid hose = 188.5 in³ = 3.09 L Volume of vapor hose= 47.124 in3 = 0.77 L The density of HFPO liquid at -25C is 1.58 kg/L Determined from physical property data The density of HFPO vapor at -25C is 0.0563 kg/L Determined by ideal gas law @ -25C and max press of 700 kPa abs. (max pressure observed H10765PG on iso container, after filling) HFPO vented from Liquid Hose: (assumes hose volume is filled with liquid) Volume of hose X liquid density = 4.88 kg from Liquid Hose HFPO vented from Vapor Hose: (assumes hose volume is filled with vapor) Volume of hose X vapor density = 0.04 kg from Vapor Hose The amount of piping involved in the decontamination is negligible (isolation valves are in close proximity to hoses). Total HFPO from decontamination of loading hoses = Number of events * (vented from liquid hose + vapor hose) 256 kg HFPO 52 4.92 564 lb HFPO As in the HFP section above, HFPO is vented from the crude dryers during each dryer change. HFPO vented = %HFPO x lb of VOC per dryer change x number of dryer changes in the year= 347 lb HFPO from dryers After-control emissions from the Waste Gas Scrubber with an assumed efficiency of zero percent (0%) (HFPO is not scrubbed out)

VOC Emissions

423 lb HFPO from A/F Column

11,618 lb HFPO from Stripper Column

8,819 lb HFPO from Solvent Recycle Tank

564 lb HFPO from Unloading Hoses

347 lb HFPO from dryer changes

30 lb HFPO sent to VE-South Process when VE-S shutdown

21,801 lb HFP

21,801 lb VOC

F. Perfluoromethylcyclopropane (PMCP)
Oxygen (O₂)
Fluoroform (CF₃H)
Carbon Dioxide (CO₂)

CAS No. 379-16-8 CAS No. 7782-44-7 CAS No. 75-46-7 CAS No. 124-38-9

PMCP, O_2 , CF_3H , and CO_2 are not VOCs nor do they have potential to make HF. Since they are not reportable emissions, the calculations are not shown here.

G. Annual Point source emissions summary - Process Vents (after control)

	·	VOC (lb)	Equiv HF (lb)
A.	COF2	454	275
В.	PAF	479	82
C.	Acid Fluoride Solvent (TFF)	440	860
	Acid Fluoride Solvent (TAF)	979	
D.	HFP	43,951	0
E.	HFPO	21,801	0
	Total for year (lb)	68,104	1,218

Equiv HF represents conservative estimate total for TFF+TAF

I. Equipment Emissions

Equipment Emissions are a function of the number of emission points in the plant (valves, flanges, pump seals). For the equipment emission calculations the inventory shown below is conservative and based on plant and process diagrams. Note that the emission types are as follows: Equipment Emissions (EE) inside buildings = Stack Emissions (SE) Equipment Emissions (EE) outside buildings = Equipment Fugitive Emissions (FE) Maintenance Fugitive Emissions (ME)

A. Equipment Emissions Inside Buildings (Stack Emissions)

1. Equipment Emissions (EE) from Barricade:

Emissions are vented from equipment located in the barricade and are vented through the barricade scrubber. Barricade scrubber is 95% efficient for control of acid fluorides. From ASPEN Model:

scrubbe	31 IS 957	enicien	LIOI COIII											
				Reacto	r/Solvent F	Recycle/So	lvent Colu	mn & Asso	ciated Equ	ipment				
			l	Avg. Conte	nts (kg/hr)	1	% of			HF	% Overall HF Potential			1
Material	VOC	HFA	Line 207B	Line 255	Line 305	Total	contents	% VOC	% HF .	Potential	0.606	0.172	0.11	0.081
HFPO	x		1491.169	10.38736	277.0774	1778.634	6.02	6.02						
COF ₂	x	x	223.8143	0	43.16596	266.9803	0.90	0,90	0.90	0.606	0.90			
PAF	×	х	206.9447	0.069376	39,84183	246.8559	0.84	0.84	0.84	0.172		0.84		
HFP	х		1916.528	3.505045	366.0799	2286.113	7.74	7.74						
F23			5.084826	0	0.980683	6.065509	0.02				L			
O ₂			26.42446	0	5.096328	31.52079	0.11							
CO₂			0	0	0	0	0.00							
PMAF	x	×	17.91142	0.074824	3.378695	21,36494	0.07	0.07	0.07	0.11			0.07	
TAF _{N=1}	x	×	5230.229	1005.205	0	6235.434	21.11	21.11	21.11	0.606	21.11			
TAF _{N=2}	х	×	11378.11	2192.731	0	13570.84	45.94	45.94	45.94	0.606	45.94			
TAF _{N=2+}	х	х	3753.989	723.9967	0	4477.986	15.16	15.16	15.16	0.606	15.16			
Dimer	х	х	7.260958	0	0	7.260958	0.02	0.02	0.02	0.605	0.02			
Trimer	х	х	9.359539	0	0	9.359539	0.03	0.03	0.03	0,081				0.03
PMCP			476.0362	79.94006	0,015	555.9913	1.88							
HFA	х		6.427688	0	1.233058	7.660746	0.03	0.03						
Benzene			14.78905	2.867976	0	17.65703	0.06							
Toluene			14.88	2.87	0	17.75035	0.06				<u> </u>			
Total						29537.47	100.00	97.87	84.08		83.1	0.8	0.1	0.0
Assume	्र साम्बर	ộc ve oi h	OCC SS I	iaichais	ale VO	ری,	1				VAVera	re HF Pote	ntial w	(0.505393

64% are acid fluorides with 95% controlled in the barricade scrubber.

16% are non-acid fluorides with 0% controlled in the barricade scrubber.

^{100%} of the liquid is 0.505 weight fraction HF.

Darricaue.	Ва	rrica	ade:
------------	----	-------	------

arncade:			
Valve emissions:	219 valves x 0.00039 lb/hr/valve	=	0.085 lb/hr EE
Flange emissions:	438 flanges x 0.00018 lb/hr/flange	=	0.079 lb/hr EE
Pump emissions:	2 pump x 0.00115 lb/hr/pump	=	0.002 lb/hr EE
Total equipment emis	ssion rate		0.167 lb/hr EE

Flange emissions: Pump emissions:	438 flanges x 0.00018 lb/hr/flange	=	0.079 lb/hr EE
	2 pump x 0.00115 lb/hr/pump	=	0.002 lb/hr EE
Total equipment emis		=	0.167 lb/hr EE

Darricauc	VOC	'-
From	acid	fluorides:

iues.		Ų. 10 <i>1</i>	וט. בביווו	
	Х	7058.9	operating hr/year	
	Х	0.840	lb. A/F VOC/lb. EE	
	=	987.551	lb VOC generated	

	987.551 lb VOC generated
x_	(100%-95%) scrubber efficiency
=	49.378 lb VOC emitted

From non-acid fluorides:

0.167 lb. EE/hr

0 167 lb EE/br

7058.9 operating hr/year 0.160 lb. Non-A/F VOC/lb. EE

= 188,105 lb VOC

Total Barricade VOC Emissions:

49.378 lb VOC 188.105 lb VOC 237.483 lb VOC

Barricade HF:

0.167 lb. EE/hr 7059 operating hr/year x 0.505 lb. HF/lb. EE (100%-95%) scrubber efficiency

29.685 lb HF

2. Equipment Emissions (EE) From HFPO Tower

Emissions are vented from equipment located in tower and are vented through stack. From ASPEN Model:

				A/F C	Column, Sci	rubbers, Di	ryers, Strip	per Colum	n & Associ	ated Equip	ment				
				Avg.	Contents (l	kg/hr)		% of		_	HF	%	Overall H	- Potential	
Material	VOC	HFA	Line 405	Line 572	Line 605	⊔ne 652	Total	contents	% VOC	% H <u>F</u>	Potential	0.606	0.172	0.11	0.08
HFPO	х		0.089511	0	0.117529	271.2223	271.4293	37.18	37,18						
COF ₂	×	x	43.11259	. 0	0	0	43.11259	5.91	5.91	5.91	0.606	5.91			
PAF	x	х	33.16642	0	0	0	33.16642	4.54	4.54	4.54	0.172		4.54		
HFP .	x		0.327155	0	0.265321	361.8233	362.4158	49.64	49.64						
F23			0.978137	0	0.489234	0.033179	1.50055	0.21							
O ₂			5.096328	0	0	0	5.096328	0.70						•	
CO2			0	0	1.448218	0.035243	1.483461	0.20							
PMAF	х	х	0	0	Ö	0	0	0.00	0.00	0.00	0.11			0.00	
TAF _{N=1}	x	х	0	0	0	0	0	0.00	0.00	0.00	0.606	0.00			
TAF _{N=2}	x	×	0	D	o	0	0	0.00	0.00	0.00	0.606	0.00			
TAF _{N=2+}	х	x	0	0	o	0	0	0.00	0.00	0.00	0.606	0.00			
Dimer	х	x	0.585265	0	0	0	0.585265	0.08	0.08	0.08	0.606	0.08			
Trimer	х	х	0	0	0	0	0	0.00	0.00	0.00	0.081	.			0.00
PMCP			0	0	0	11.2638	11.2638	1.54							
HFA	x		0	0	0	0	0	0.00	0.00						
Water			.0	129.8095	. 0										
Benzene			0	0	0	0	٥	0.00							
Toluene			0	0	0	0	0	0.00							
Total							730.0535	100,00	97.35	10.53		6.0	4.5	0.0	0.0
Assume	that:	97 wt. %	of the r	rocess	material	are VO	Os:					Averag	e HF Pote	ntial	0.044087

100% of the liquid is 0.044 weight fraction HF.

Valve emissions:	298 valves x 0.00039 lb/hr/valve	=	0.116 lb/hr EE	
Flange emissions:	596 flanges x 0.00018 lb/hr/flange	=	0.107 lb/hr EE	
Pump emissions:	2 pumps x 0.00115 lb/hr/pump	. =	0.002 lb/hr EE	
Total equipment emis	ssion rate	=	0.226 lh/hr FF	

VOC:	Ų.22b	ID.	EE/nr	
	7000			1

7059 operating hr/year 0.970 lb. VOC/lb. EE 1546.078 lb VOC

HF: 0.226 lb. EE/hr

7059 operating hr/year 0.044 lb. HF/lb. EE

70.131 lb HF

B. Equipment Emissions Outside Buildings (Fugitive Emissions)

1. Fugitive Emissions (FE) From Outside Unit Operations

				Reacto	r/Solvent I	Recycle/So	lvent Colu	mn & Asso	ciated Equ	lpment				
			Avg. Contents (kg/hr)			% of			HF	% Overall HF Potential				
Material	VOC	HFA	Line 706	Line 805	Line 812	Total	contents	% VOC	% HF	Potenti <u>al</u>	0.606	0.172	0.11	0.08
HFPO	x	<u> </u>	238.6887	32.53355	0.014913	271.2372	3.97	3.97						
COF ₂	x	×	٥	0	0	0	0.00	0.00	0.00	D.606	0.00			
PAF	x	х	0	0	0	0	0.00	0.00	0.00	0.172		0.00		
HFP	x		0.08421	361.7391	0.181291	362.0046	5.30	5.30						
F23			0	0.033124	0	0.033124	0.00							
02			0	0	0	0	0.00							
CO ₂			0.035184	0	0	0.035184	0.00							
PMAF	х	x	Ó	0	0	0	0.00	0.00	0.00	0.11			0.00	
TAF _{N=1}	х	x	0	0	D	0	0.00	0.00	0.00	0.606	0,00			
TAF _{N=2}	×	x	0	0	0	O	0.00	0.00	0.00	0,606	0.00			
TAF _{N=2+}	х	×	0	0	0	O	0.00	0.00	0.00	0,606	0.00			
Dimer	x	x	0	O	О	0	0.00	0.00	0.00	0.606	0.00			
Trimer	х	х	0	O	0	0	0.00	0.00	0.00	0.081				0.00
PMCP			0	11.2536	6,755249	18.00885	0.26							
HFA	x		0	0	0	0	0.00	0.00						
Benzene	x		0	0	0	0	0.00	0.00						
Toluene	x		0	0.016223	6180.06	6180.076	90.47	90.47			L,			
Total .						6831.395	100.00	99.74	0.00		0.0	0.0	0.0	0.0
Assum	e that :	100 wt.	% of the	proces	s mater	al are V	OCs				Avera	ge HF Pot	ntial	400

0 wt. % of the liquid is HF.

Valve e	emissions	s: 317 valves x 0.00039 lb/hr/valve		=	0.124 lb/hr FE
Flange	emissio	ns: 634 flanges x 0.00018 lb/hr/flange	•	=	0.114 lb/hr FE
Pump e	emission	s: 3 pump x 0.00115 lb/hr/pump		= .	0.003 lb/hr FE
Total fu	igitive en	nission rate		=	0.241 lb/hr FE
VOC:		0.241 lb. FE/hr	HF:		0.241 lb. FE/hr
	Х	7059 opearting hr/year		x	7059 operating hr/year
	X	1.00 lb. VOC/lb. FE		x	0.0 lb. HF/lb. FE
	=	1703 lb VOC		=	0.00 lb HF
		1547 lb VOC excluding toluene, which	is calculated bel	ow by mass b	alance

2. Fugitive Emissions From HFP Storage and Feed

Assume that : This system contains only HFP, so 100 wt. % of the process material are VOCs

HFP has no potential to form HF, so 0 wt. % of the liquid is HF.

vaive e	emissions:		120 valves x 0.00039 lb/nr/valve		=	0.047 ID/Nr FE
Flange	emissions	s:	135 flanges x 0.00018 lb/hr/flang	je	=	0.024 lb/hr FE
Total fu	ıgitive emi	ission r	ate		=	0.071 lb/hr FE
VOC:		0.071	lb. FE/hr	HF:		0.071 lb. FE/hr
	X	7059	operating hr/year		x	7058.88 operating hr/year
	x	1.00	lb. VOC/lb. FE		x	0.0 lb. HF/lb. FE
	=	502	Ib VOC		=	0.00 lb HF

3. Fugitive Emissions From Benzene

Basis:

Fugitive emissions are determined via mass balance, i.e. any mass of benzene unaccounted for in the mass balance will be assumed to be air emissions.

Assume that: Benzene introduced into the process is mostly destroyed by reaction.

Ratio of emissions to benzene used = 1.9 lb emission/368 lb benzene used

Calculations:

Benzene introduced to process:

560.23 lbs

Benzene emissions:

560.228571 lbs

1.90 lb emission 368 lb benzene

2.89 lb benzene emission

4. Fugitive Emissions of Toluene by Mass Balance

Basis:

Fugitive emissions are determined via mass balance, i.e. any mass of toluene unaccounted for in the mass balance will be assumed to be air emissions.

Assume that: 95% of raw ingredient becomes waste

Mass Balance:

Toluene inventory in process as first day of month ('User E	+	3935.20 lb	1-Jan
Toluene added to process:	+	20026 lb	
Toluene inventory in process as of last day of month ('Use	-	5480.00 lb	1-Jan
Toluene destroyed in process:	_	0 lb	
Toluene shipped off with product:	-	0 lb injected into product	
Toluene removed from process as a solid waste:	_	18326 lb	
Toluene released to air via permitted stack:	-	0 lb	
Toluene released to process wastewater:	-	0 lb	
Toluene released to the ground (spill):	-	0 lb	
Unaccounted for difference in mass:	=	155 lb toluene =	155 lb VOC

5. Total Equipment Emissions (Fugitive)

•	Inside Emis	Outside Emissions (Fugitive Emissions)		
•	(Stack Emis			
Emission Source	Ib VOC	Ib HF	Ib VOC	lb HF
A-1 Barricade	237.48	29.69		
A-2 HFPO Tower	1546.08	70.13		575
B-1 Outside operations(excluding toluene system)			1547	
B-2 HFP Storage and Feed		_	501.89	
B-3 Benzene system			2.89	
B-4 Toluene mass balance			155.20	
Total	1783.56	99.82	2207.38	0

6. Speciated Equipment and Fugitive Emissions for annual reporting

For speciated reporting, the following assumptions are made:

- AF VOCs from the barricade (J42) are reported as 50% TAF and 50% TFF
- Non-AF VOCs from the barricade (E48) are reported as 50% HFP and 50% HFPO
- Tower VOCs (H177) are reported as 38% HFPO, 51% HFP, 6% COF2, and 5% PAF.
- Toluene emissions are included in B-4. The remaining VOC (J178) is reported as 60% HFP and 40% HFPO.
- HFP system VOCs are 100% HFP B2
- VOCs calculated in B3 are 100% benzene B3
- Toluene system emissions are 100% toluene

Compound	lb VOC
COF2	92.76
PAF	77.30
A/F Solvent (TFF)	24.69
A/F Solvent (TAF)	24.69
HFP	2312.88
HFPO	1300.52
Benzene	2.89
Toluene	155.20
Total VOC	3990.94

Equipment Cleaned/	HFP	HFPO	TAF	TFF	COF2	PAF
Decontaminated	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
TOTAL	3175.23	5920.32	580.11	580.11	0.05	0.05

Total VOC (lb/yr) 10255.87

Data summed from monthly report worksheets. Calculations based on vessel volumes and compositions at time of decontamination.

Accidental Releases to Atmosphere

There were 3 accidental releases to the atmosphere recorded in 2015. Refer to incident reports for more information

I. Total Emissions from Accidental Releases

	Source (Incident date)		TFF (lb)	HFP (lb)	HFPO (lb)	COF2 (lb)	PAF (lb)	HFA (lb)	MeCl	Toluene (lb)	VOC (lb)	HF (lb)
A.	15-0028-RCI 2/22/15	0.00	0.00	0	0	0	0	0	Ö	0	0.00	0.00
В.	15-0076-RCI 5/21/15	0.0	0.0	0	0	0	0	0	0	0.5	0.50	0
C.	15-0120-RCI 8/14/2015	0.0	0.0	0.00	5.00	0	0	0	0	0	5.0	0
D.												
E.												
F.												
G.												
H.												
T.												
J.												
K.												
L.												
M.												
	Total	0	0	0	5	0	0	0	0	1	5.5	0

Vinyl Ethers North Process
NS-B

2015 Emissions Summary

A. VOC Emissions Summary

Nafion® Compound	CAS Chemical Name	CAS No.	EVE Process Emission (lb.)	PPVE Process Emission (lb.)	PSEPVE Process Emission (lb.)	Accid'l Releases (lb.)	Total Vinyl Ethers North Emissions (lb.)
HFP	Hexafluoroproplyene	116-15-4	147	11,247	296		11,691
HFPO	Hexafluoropropylene oxide	428-59-1	145	22,803	1,205		24,152
HFPO-Dimer	2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-	2062-98-8	1	38	0		39
EVE	(Trifluoroethenyl oxy] Methyl]-1,2,2, Tetrafluoroethoxy] -2,2,3,3- Tetrafluoro-, Methyl Ester		71	0	0		71
PPVE	Perfluoropropyl vinyl ether	1623-05-8	0	2,868	0		2,868
PSEPVE	Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Ether	16090-14-5	0	0	277		277
PPF	Perfluoropropionyl fluoride	422-61-7	0	79	0		79
TFE	Tetrafluoroethylene	116-14-3	63	20	478		561
C4	Perfiuoro-2-butene	360-89-4	0	440	1,095		1,535
C5	Perfluoropentene	376-87-4	0	38	0		38
Diglyme	Diethylene Glycol Dimethyl Ether	111-96-6	0	0	0		0
AN	Acetonitrile		0	375	0		375
ADN	Adiponitrile	111-69-3	0	0	0		0
TTG	Tetraglyme	143-24-8	2	0	0		2
DA	Tetrafluoro-2[Hexafluoro-2- (Tetrafluoro-2- {Fluorosulfonyl}Ethoxy) Propoxy	4089-58-1	0	0	14		14
Hydro-PSEPVE	Tetrafluoro-2-[Trifluoro-2-(1,2,2,2- Tetra-fluoroethoxy)-1-	755-02-9	0	0	0		0
МА	Tetrafluoro-2-[Tetrafluoro-2- (Fluorosulfonyl)Ethoxy]-Propanoyl	4089-57-0	0	0	6		6
MAE	Methyl Perfluoro (5-(Fluoroformyl)-4- Oxahexanoate)	69116-72-9	2	0	.0		2
DAE	Methyl Perfloro (8-(Fluoroformyl)-5- methyl-4,7-Dioxanonanoate)	69116-73-0	3	0	0		3
TAE	Methyl Perfluoro (11-(Fluoroformyl)- 5,8-Dimethyl-4,7,10-	69116-67-2	0	0	0		0
hydro-EVE	Methyl Perfloro-5-methyl-4,7- dioxanon-8-hydroaneoate	87483-34-9	6	0 .	0		6
iso-EVE	Methyl Perfluoro-6-Methyl-4,7- Dioxanon-8 Eneoate	73122-14-2	10	0	0		10
MMF	Methyl-2,2-Difluoromalonyl Fluoride	69116-71-8	0	0	0		0
HFPO Trimer	Perfluoro-2,5-Dimethyl-3,6-	2641-34-1	0	1	0		1
Iso-PSEPVE	Perfluoro-1-Methyl-2-(2	34805-58-8	0	0	0		0
	Total VOC	Emissions (lbs)	448	37,908	3,372	0	41,728
	Total VOC	Emissions (tons	0.2	19.0	1.7	0	20.9

B. VOC Control Device Efficiency

· v	VOCs After Control (lbs)				
Process Emissions (lb.)	Equip't Emiss'n (lb.)	Maint. Emiss'n (lb.)	Accid'l Releases (lb.)	Total VOC Generated (lbs)	Total VOC Emitted (lbs)
48,073	2,888	1,301	0.	52,262	41,728

52,262 lb VOC generated

41,728 lb VOC emitted 10,533 lb VOC removed in control device

10,533 lb VOC removed in control device 52,262 lb VOC generated

20.16% VOC control efficiency

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No:

NS-B

Emission Source Description:

VE-North PSEPVE Manufacturing Process

Process & Emission Description: The VE-North PSEPVE manufacturing process is a continuous chemical reaction. All emissions from the process are vented through the Nafion Division Waste Gas Scrubber (Control Device ID No. NCD-Hdr) which has a documented control efficiency of 99.6% for all acid fluoride compounds. Some emitted compounds are assumed to pass completely through the scrubber, so the control efficiency for those compounds is assumed to be 0%. The control of emissions of specific compounds will be addressed and detailed in the following pages.

The PSEPVE process in VE-North emits compounds in the acid fluoride family. In the presence of water (such as in atmospheric moisture), these acid fluorides can eventually hydrolyze to hydrogen fluoride. For the purpose of this emissions inventory, a conservative approach will be taken and the acid fluorides will be reported both as a VOC and as the equivalent quantity of hydrogen fluoride.

Basis and Assumptions:

- The PSEPVE process flowsheet is the basis for relative concentrations of before-control emissions of gaseous wastes.
- Calculations of point source emissions are based on actual vent flow totals taken from the IP21 Historian,

B. HFPO Hexafluoropropylene oxide

CAS No. 428-59-1

HF Potential

HFPO is a VOC without the potential to form HF

Quantity Released

HFPO unreacted in condensation is vented to the WGS.

HFPO vented per the process flowsheet

Vented from the Condensation Reactor:

3.28 kg HFPO
3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg HFPO 18.76 kg Crude Receiver Vent

Vented from the Foreshots Receiver

0 kg HFPO 0.33 kg ForeshotsReceiverVent

HFPO vented based on HFPO vented based on HFPO vented based on	 535 kg total Condensation Reactor vent stream (22266FG). 21,690 kg total Crude Receiver vent stream (22701FG). 4 kg total Foreshots Receiver vent stream (22826FG). 			
HFPO vented from Condensation Reactor: 3.28 kg HFPO 3.66 kg CndRx	x	535 kg CndRx	=	480 kg HFPO
HFPO vented from Crude Receiver 0.00 kg HFPO 18.76 kg CrRec	x	21,690 kg CrRec	=	0 kg HFPO
HFPO vented from Foreshots Receiver 0.00 kg HFPO 0.33 kg FsRec	X	4 kg FsRec	=	0 kg HFPO
VOC Emissions	+ + = .	480 kg from Conden 0 kg from Crude F 0 kg from Foresho 480 kg HFPO	Receiver	480 kg VOC 1,055 lb VOC

C. PPF

Perfluoropropionyl fluoride

CAS No. 422-61-7

HF Potential:

Each mole of PPF (MW = 166) can generate 1 mole of HF (MW = 20).

$$1 kg PPF \cdot \frac{1 mole PPF}{166 g PPF} \cdot \frac{20 g HF}{1 mole HF} \cdot \frac{1 mole HF}{1 mole PPF} = 0.120 kg HF$$

Therefore, each 1 kg of PPF generates

0.120 kg of HF

Quantity Released

Before-control PPF vented per the process flowsheet

Vented from the Condensation Reactor:

0.20 kg PPF 3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg PPF 18.76 kg Crude Receiver Vent

Vented from the Foreshots Receiver

0 kg PPF 0.33 kg ForeshotsReceiverVent

PPF vented based on

535 kg total Condensation Reactor vent stream (22266FG).

PPF vented based on

21,690 kg total Crude Receiver vent stream (22701FG).

PPF vented based on

4 kg total Foreshots Receiver vent stream (22826FG).

Before control PPF vented from Condensation Reactor:

0.20 kg PPF 3.66 kg CndRx 535 kg CndRx

30 kg PPF

PPF vented from Crude Receiver

0.00 kg PPF

18.76 kg CrRec

21,690 kg CrRec

0 kg PPF

PPF vented from Foreshots Receiver

0.00 kg PPF 0.33 kg FsRec 4 kg FsRec

0 kg PPF

Total before-control PPF vented

30 kg PPF

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

VOC Emissions

30 kg PPF

Waste Gas Scrubber

(100%-99.6%) Control Efficiency

0.12 kg PAF =

0.12 kg VOC 0.26 lb. VOC

HF Equivalent Emissions

0 kg PPF

0.120 kg HF/kg PPF

0.01 kg HF

0.03 lb. HF

D. TFE Tetrafluoroethylene

CAS No. 116-14-3

477 lb VOC

HF Potential:

TFE is a VOC without the potential to form HF

Quantity Released

TFE is a byproduct that can be formed in the ABR system. It is an inert in VE-North that is vented to the WGS.

TFE vented per the process flowsheet

TFE vented based on	535 kg total Condensation Reactor vent stream (22266FG).					
TFE vented based on	21,69	21,690 kg total Crude Receiver vent stream (22701FG).				
TFE vented based on		4 kg total Foreshots Receiver vent stream (22826FG).				
TFE vented from Condensation Reactor 0.00 3.66 kg TFE kg CndRx	: x	535 kg CndRx	= .	0 kg TFE		
TFE vented from Crude Receiver 0.19 18.76 kg TFE kg CrRec	x -	21,690 kg CrRec	Ξ	217 kg TFE		
TFE vented from Foreshots Receiver 0.00 0.33 kg TFE kg FsRec	x -	4 kg FsRec	=	0 kg TFE		
VOC Emissions		0 kg from Condens	ation Reactor			
	+ 217 kg from Crude Receiver					
	+	0 kg from Foreshot	s Receiver			
·	=	217 kg TFE	=	217 kg VOC		

0.84 kg PSEPVE

0.84 kg VOC 1.84 lb VOC

E. PSEPVE CAS No. 1623-5-8 Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Ether HF Potential: PSEPVE is a VOC without the potential to form HF Quantity Released PSEPVE vented per the process flowsheet 0 kg PSEPVE 3.66 kg Cond Rx Vent Flow Vented from the Condensation Reactor: 0 kg PSEPVE Vented from the Crude Receiver 18.76 kg Crude Receiver Vent 0.07 kg PSEPVE 0.33 kg ForeshotsReceiver Vent Vented from the Foreshots Receiver 535 kg total Condensation Reactor vent stream (22266FG). PSEPVE vented based on PSEPVE vented based on 21,690 kg total Crude Receiver vent stream (22701FG). 4 kg total Foreshots Receiver vent stream (22826FG). PSEPVE vented based on PSEPVE vented from Condensation Reactor: 0 kg PSEPVE 535 kg CndRx 0.00 3.66 kg PSEPVE kg CndRx PSEPVE vented from Crude Receiver 21,690 kg CrRec 0 kg PSEPVE 0.00

4 kg FsRec

0.84 kg PSEPVE

0 kg from Condensation Reactor 0 kg from Crude Receiver 0.84 kg from Foreshots Receiver

18.76 kg PSEPVE kg CrRec

0.33 kg PSEPVE kg FsRec

0.07

VOC Emissions

PSEPVE vented from Foreshots Receiver

F. C4 Perfluoro-2-butene

CAS No. 360-89-4

HF Potential:

C4s are VOCs without the potential to form HF

Quantity Released

C4s are perfluorobutenes that are byproducts from the Agitated Bed Reactor system. They are inerts in VE-North that is vented to the WGS.

C4s vented per the process flowsheet

Vented from the Foreshots Receiver

0.33 kg ForeshotsReceiverVent

535 kg total Condensation Reactor vent stream (22266FG).

C4s vented based on C4s vented based on 21,690 kg total Crude Receiver vent stream (22701FG). C4s vented based on 4 kg total Foreshots Receiver vent stream (22826FG). C4s vented from Condensation Reactor: 0.00 535 kg CndRx 0 kg C4s 3.66 kg C4s kg CndRx C4s vented from Crude Receiver 0.41 21,690 kg CrRec 477 kg C4s 18.76 kg C4s kg CrRec C4s vented from Foreshots Receiver 0.10 4 kg FsRec 1 kg C4s 0.33 kg C4s kg FsRec VOC Emissions 0 kg from Condensation Reactor 477 kg from Crude Receiver 1 kg from Foreshots Receiver 478 kg C4s 478 kg VOC 1,052 lb VOC G. HFPO Trimer

CAS No. 2641-34-1

Perfluoro-2,5-Dimethyl-3,6-Dioxanonanoyl

HF Potential:

Each mole of HFPO Trimer (MW = 498) can generate 1 mole of HF (MW = 20).

 $1 kg MA \cdot \frac{1 moleTrimer}{498g Trimer} \cdot \frac{20 g HF}{1 moleHF} \cdot \frac{1 moleHF}{1 moleTrimer} = 0.0402 kg HF$

Therefore, each 1 kg of HFPO Trimer generates

0.040 kg of HF

Quantity Released

HFPO Trimer is a byproduct formed in the Condensation Reactor system.

HFPO Trimer vented per the process flowsheet

0 kg HFPO Trimer

Vented from the Condensation Reactor:

3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver:

0 kg HFPOTrimer

18.76 kg CrudeReceiver Vent

Vented from the Foreshots Receiver:

0.01 kg HFPO Trimer

0.33 kg ForeshotsReceiverVent

HFPO Trimer vented based on

535 kg total Condensation Reactor vent stream (22266FG).

HFPO Trimer vented based on

21,690 kg total Crude Receiver vent stream (22701FG).

HFPO Trimer vented based on

4 kg total Foreshots Receiver vent stream (22826FG).

Before control HFPO Trimer vented from Condensation Reactor:

0.00

535 kg CndRx

0 kg HFPO Trimer

3.66 kg HFPO Trimer

kg CndRx

HFPO Trimer vented from Crude Receiver

0.00

21,690 kg CrRec

0 kg HFPO Trimer

18.76 kg HFPO Trimer

kg CrRec

HFPO Trimer vented from Foreshots Receiver

0.01

4 kg FsRec

0.17 kg HFPO Trimer

0.33 kg HFPO Trimer

kg FsRec

Total before-control HFPO Trimer vented

 $0.17~\mathrm{kg~VOC}$

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

VOC Emissions

0.17 kg HFPO Trimer

Waste Gas Scrubber

(100%-99.6%) Control Efficiency

0.0007 kg VOC

0.0007 kg HFPO Trimer =

0.001 lb. VOC

HF Equivalent Emissions

0.0007 kg HFPO Trimer

0.040 kg HF/kg HFPO Trimer

= 0.00003 kg HF

0.00006 lb. HF

H. Monoadduct (MA)

Tetrafluoro-2-[Tetrafluoro-2-(Fluorosulfonyl)Ethoxy]-Propanoyl Fluoride

CAS No. 4089-57-0

HF Potential:

Each mole of MA (MW = 346) can generate 1 mole of HF (MW = 20).

$$1 kg MA \cdot \frac{1 mole MA}{346 g MA} \cdot \frac{20 g HF}{1 mole HF} \cdot \frac{1 mole HF}{1 mole MA} = 0.058 kg HF$$

Therefore, each 1 kg of MA generates

0.058 kg of HF

0 kg MA

Quantity Released

Before-control MA vented per the process flowsheet

Vented from the Condensation Reactor: 3.66 kg Cond Rx Vent Flow

0 kg MA Vented from the Crude Receiver 18.76 kg Crude Receiver Vent

 $0.0045\,kg\,MA$

Vented from the Foreshots Receiver 0.33 kg ForeshotsReceiverVent

MA vented based on 535 kg total Condensation Reactor vent stream (22266FG). MA vented based on 21,690 kg total Crude Receiver vent stream (22701FG).

MA vented based on 4 kg total Foreshots Receiver vent stream (22826FG).

Before control MA vented from Condensation Reactor:

0.00~kg~MA535 kg CndRx 0 kg MA 3.66 kg CndRx

MA vented from Crude Receiver

0.00 kg MA 21,690 kg CrRec 0 kg MA 18.76 kg CrRec

MA vented from Foreshots Receiver

Total before-control MA vented

0.0045 kg MA 4 kg FsRec 0.056 kg MA 0.33 kg FsRec

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

VOC Emissions

0.056 kg MA Waste Gas Scrubber (100%-99.6%) Control Efficiency 0.00022 kg MA 0.00022 kg VOC

0.000 lb. VOC

0.056 kg MA

HF Equivalent Emissions

0.00022 kg MA 0.058 kg HF/kg MA 0.00 kg HF 0.00 lb. HF

Diadduct (DA)

CAS No. 4089-58-1

Tetrafluoro-2[Hexafluoro-2-(Tetrafluoro-2-{Fluorosulfonyl}Ethoxy) Propoxy Propionyl Fluoride

HF Potential:

Each mole of DA (MW = 512) can generate 1 mole of HF (MW = 20). 1 mole DA 20 g HF 1 mole HF 512 g DA 1 mole HF 1 mole DA

Therefore, each 1 kg of DA generates

0.039 kg of HF

Quantity Released

Before-control DA vented per the process flowsheet

Vented from the Condensation Reactor:

0 kg DA 3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg DA 18.76 kg Crude Receiver Vent

0.13 kg DA

Vented from the Foreshots Receiver

0.33 kg ForeshotsReceiverVent

DA vented based on DA vented based on DA vented based on

535 kg total Condensation Reactor vent stream (22266FG). 21,690 kg total Crude Receiver vent stream (22701FG).

4 kg total Foreshots Receiver vent stream (22826FG).

Before control DA vented from Condensation Reactor:

0.00 kg DA 535 kg CndRx 3.66 kg CndRx

0 kg DA

DA vented from Crude Receiver

0.00 kg DA 18.76 kg CrRec 21,690 kg CrRec

0 kg DA

DA vented from Foreshots Receiver

0.13 kg DA 0.33 kg FsRec 4 kg FsRec

1.62 kg DA

Total before-control DA vented

1.62 kg DA

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

VOC Emissions

1.62 kg DA

Waste Gas Scrubber

(100%-99.6%) Control Efficiency

0.0065 kg DA

0.006 kg VOC 0.014 lb. VQC

HF Equivalent Emissions

0.0065 kg DA 0.039 kg HF/kg DA 0.00025 kg HF

0.00 lb. HF

CAS No. 755-02-9

J. Hydro PSEPVE

Tetrafluoro-2-[Trifluoro-2-(1,2,2,2-Tetra-fluoroethoxy)-1-(Trifluoromethyl) Ethoxy]-**Ethane Sulfonyl Fluoride**

HF Potential:

Hydro-PSEPVE is a VOC without the potential to form HF

Quantity Released

Hydro-PSEPVE vented per the process flowsheet

Vented from the Condensation Reactor:

0 kg Hydro – PSEPVE 3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg Hydro-PSEPVE

18.76 kg Crude Receiver Vent

Vented from the Foreshots Receiver

0.0045 kg Hydro-PSEPVE 0.33 kg ForeshotsReceiverVent

Hydro-PSEPVE vented based on

535 kg total Condensation Reactor vent stream (22266FG).

Hydro-PSEPVE vented based on

21,690 kg total Crude Receiver vent stream (22701FG).

Hydro-PSEPVE vented based on

4 kg total Foreshots Receiver vent stream (22826FG).

Hydro-PSEPVE vented from Condensation Reactor:

0.00 kg Hydro-PSEPVE

535 kg CndRx

0 kg Hydro-PSEPVE

3.66 kg CndRx

Hydro-PSEPVE vented from Crude Receiver

0.00 kg Hydro-PSEPVE

21,690 kg CrRec

0 kg Hydro-PSEPVE

18.76 kg CrRec

Hydro-PSEPVE vented from Foreshots Receiver

0.0045 kg Hydro-PSEPVE

0.33 kg FsRec

4 kg FsRec

0.056 kg Hydro-PSEPVE

VOC Emissions

0 kg from Condensation Reactor

0 kg from Crude Receiver

0.056 kg from Foreshots Receiver

0.056 kg Hydro-PSEPV

0.056 kg VOC

0.123 lb VOC

K. Iso-PSEPVE

Perfluoro-1-Methyl-2-(2 Fluorosulfonyl Ethoxy) Ethyl Vinyl Ether

CAS No. 34805-58-8

HF Potential:

Iso-PSEPVE is a VOC without the potential to form HF

Quantity Released

Iso-PSEPVE vented per the process flowsheet

Vented from the Condensation Reactor:

0 kg Iso – PSEPVE 3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg Iso - PSEPVE 18.76 kg Crude Receiver Vent

0.014 kg Iso – PSEPVE

0.014 kg Foreshots Receiver Vent

Vented from the Foreshots Receiver

Iso-PSEPVE vented based on

535 kg total Condensation Reactor vent stream (22266FG).

Iso-PSEPVE vented based on

21,690 kg total Crude Receiver vent stream (22701FG).

Iso-PSEPVE vented based on

3.66 kg CndRx

18.76 kg CrRec

4 kg total Foreshots Receiver vent stream (22826FG).

Iso-PSEPVE vented from Condensation Reactor:

0.00 kg Iso-PSEPVE

535 kg CndRx

0 kg Iso-PSEPVE

Iso-PSEPVE vented from Crude Receiver 0.00 kg Iso-PSEPVE

21,690 kg CrRec

0 kg Iso-PSEPVE

Iso-PSEPVE vented from Foreshots Receiver 0.014 kg Iso-PSEPVE

0.33 kg FsRec

4 kg FsRec

0.168 kg Iso-PSEPVE

VOC Emissions

0 kg from Condensation Reactor

0 kg from Crude Receiver

0.168 kg from Foreshots Receiver

0.168 kg Iso-PSEPVE =

0.168 kg VOC 0.369 lb VOC

L. Diglyme

CAS No. 111-96-6

The emissions of diglyme is based on a mass balance

Quantity Released

= 4,631 kg diglyme introduced into processes
= 4,631 kg diglyme transferred to H/C waste tank
= 0 kg diglyme unaccounted for and assumed emitted
= 0 lb.Diglyme

Emissions of diglyme from PSEPVE =

0 lb. Diglyme

M. Sulfonyl Fluoride (SOF2)

CAS No. 7783-42-8

HF Potential:

Each mole of SOF2 (MW = 86) can generate 2 mole of HF (MW = 20).

1 moleSOF2 20 g HF 2 moleHF - = 0.465kgHF86g SOF2 1 moleHF 1 moleSOF2

Therefore, each 1 kg of SOF2 generates

0.465 kg of HF

Quantity Released

Before-control SOF2 vented per the process flowsheet

Vented from the Condensation Reactor:

0 kg SOF2 3.66 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg SOF2

18.76 kg CrudeReceiver Vent

Vented from the Foreshots Receiver

0 kg SOF2 0.33 kg Foreshots Receiver Vent

SOF2 vented based on SOF2 vented based on SOF2 vented based on 535 kg total Condensation Reactor vent stream (22266FG).

21,690 kg total Crude Receiver vent stream (22701FG).

4 kg total Foreshots Receiver vent stream (22826FG).

Before control SOF2 vented from Condensation Reactor:

0.00 kg SOF2	_ X	 535 kg CndRx 	=	0 kg SOF2
3.66 kg CndRx	_			
SOF2 vented from Crude Receiver				
0.00 kg SOE2	v	21 690 kg CrRec	=	0 kg SOE2

SOF2 vented from Foreshots Receiver

18.76 kg CrRec

0.00 kg SOF2 4 kg FsRec 0 kg SOF2 0.33 kg FsRec

0 kg SOF2 Total before-control SOF2 vented

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

SOF2 Emissions

0 kg SOF2 Waste Gas Scrubber (100%-99.6%) Control Efficiency

0 kg SOF2 0 lb. SOF2

0 kg SOF2 HF Equivalent Emissions 0.465 kg HF/kg SOF2 0.00 kg HF 0.00 lb. HF

SOF2 is not a VOC (no carbon)

N. Carbon Dioxide (CO2)

CAS No. 124-38-9

Quantity Released

CO2 is a byproduct from the Agitated Bed Reactor system. They are inerts in VE-North that are vented to the WGS.

CO2 vented per the process flowsheet

CO vented based on	535 kg total Condensation Reactor vent stream (22266FG). 21,690 kg total Crude Receiver vent stream (22701FG).					
CO vented based on	4 kg total Foreshots Receiver vent stream (22826FG).					
CO2 vented from Condensation Reactor: 0.00 3.66 kg CO kg CndRx	x	535 kg CndRx	=	0 kg CO2		
CO2 vented from Crude Receiver 17.45 18.76 kg CO2 kg CrRec	x	21,690 kg CrRec	프	20,171 kg CO2		
CO2 vented from Foreshots Receiver 0.00 0.33 kg CO2 kg FsRec	x	4 kg FsRec	=	0 kg CO2		

CO2 Emissions Exit WGS	4	0 kg from Condens	ation Reactor	:
	+	81 kg from Crude R	eceiver	
	+	+ 0 kg from Foreshots Receiver		
	=	81 kg CO2	=	178 lb CO2
				(not a VOC)

O. VOC Summary

		Before Control Generated		After C	
				VOC	HF
	Nafion Compound Name	kg/yr	lb/yr	lb/yr	lb/yr
A.	HFP	108	238	238	
В.	HFPO .	480	1057	1,057	
C.	PPF	30	66	0.26	0.03
D.	TFE	217	478	478	
E.	PSEPVE	1	2	2	
F.	C4	478	1055	1,055	
G.	HFPO Trimer	0.17	0	0.00	0,00
H.	MA .	0.06	0	0.000	0.00
l.	DA	1.62	4	0.01	0.00
J.	Hydro PSEPVE	0.06	0.1	0.1	
K.	Iso PSEPVE	0.17	0	0	
L.	Diglyme	0	0	0	
M.	SOF2 (not a VOC)				
N.	CO2 (not a VOC)				0
	Total	1,316	2,901	2,831	0.0

P. Total Emission Summary**

** All Emissions in this table represent "After Control" emissions.

NT.	C. C. C.	Stack	Equipment	Maintenance (Note 2)	Total
Na	fion Compound Name	Emissions	Emissions (Note 1)	Emissions (Note 2)	Emissions
		lb/yr	lb/yr	lb/yr	lb/yr
A.	HFP	238	31	27	296
B.	HFPO	1,057	141	6	1,205
C.	PPF	0.26	0	0	0
D.	TFE	478	0	0	478
E.	PSEPVE	2	275	0	277
F.	C4	1,055	21	20	1,095
G.	HFPO Trimer	0.00	0	0	0
H.	MA	0.00	0	5	6
I.	DA	0.01	2	12	14
J.	Hydro-PSEPVE	0.1	0	0	0
K.	Iso-PSEPVE	0.4	0	0	0
L.	Diglyme		70	3	0
M.	SOF2 (not a VOC)	0.0	0	0	0
N.	CO2 (not a VOC)		0	0	178
*	TA		0	0	0
*	RSU		0	0	0
*	HFPO-Dimer		. 0	0	0
	Total	2,831	0	0	3,550

- Note 1 See section titled "Equipment Emissions" for details
- Note 2 See section titled "Maintenance Emissions" for details
- N CO not realistically expected through equipment or maintenance emissions
- L. Diglyme total based on material balance, see section L
- Not normally emitted from the process as a routine stack emission

Total Non AF

2,831

Total AF

0.28

HF Equivalent Emissions

Nafion Compound Name	Stack Emissions lb/yr	Equipment Emissions lb/yr	Maintenance Emissions Ib/yr	Total Emissions lb/yr
C. PPF	0.03	0.00	0.01	0.04
G. HFPO Trimer	0.00	0.00	0.01	0.01
H. MA	0.00	0.03	0.30	0.33
I. DA	0.00	0.08	0.46	0.54
M. SOF2	0.00			0.00
* TA	•	0.00	0.01	0.01
* RSU		0.00	0.00	0.01
* HFPO-Dimer		0.00	0.02	0.02
Total	0.03	0.11	0.78	0.92

The estimated HF equivalent emissions were determined by multiplying the total emission quantity of an acid fluoride by the ratio of the molecular weight of HF divided by the molecular weight of the specific acid fluoride. This is based on the fact that one mole of an acid fluoride will generate one mole of HF.

For example, if 100 lb. of PPF was emitted:

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No:

NS-B

Emission Source Description:

VE-North PPVE Manufacturing Process

Process & Emission Description: The VE-North PPVE manufacturing process is a continuous chemical reaction. All emissions from the process are vented through the Nafion Division Waste Gas Scrubber (Control Device ID No. NCD-Hdr) which has a documented control efficiency of 99.1% for all acid fluoride compounds. Some emitted compounds are assumed to pass completely through the scrubber, so the control efficiency for those compounds is assumed to be 0%. The control of emissions of specific compounds will be addressed and detailed in the following pages.

The PPVE process in VE-North emits compounds in the acid fluoride family. In the presence of water (such as in atmospheric moisture), these acid fluorides can eventually hydrolyze to hydrogen fluoride. For the purpose of this emissions inventory, a conservative approach will be taken and the acid fluorides will be reported both as a VOC and as the equivalent quantity of hydrogen fluoride.

Basis and Assumptions:

- The PPVE process flowsheet is the basis for relative concentrations of before-control emissions of gaseous wastes.
- Calculations of point source emissions are based on actual vent flow totals taken from the IP21 Historian.

Point Source Emission Determination

A. Hexafluoropropylene (HFP)

CAS No. 116-15-4

HF Potential:

HFP is a VOC without the potential to form HF

Quantity Released

HFP is a byproduct present in the HFPO feed. It is an inert in VE-North that is vented to the WGS.

HFP vented per the process flowsheet

Vented from the Condensation Reactor: $\frac{0.05 \, kg \, HFP}{2.35 \, kg \, Cond \, Rx \, Vent \, Flow}$

Vented from the Crude Receiver 0.00 kg HFP

3.97 kg Crude Re ceiver Vent

Vented from the Stripper $100 \ kg \ Stripper \ Vent$

HFP vented based on 2,450 kg total Condensation Reactor vent stream (22266FG).

HFP vented based on 15,726 kg total Crude Receiver vent stream (22701FG).

HFP vented based on 1,021 kg total Foreshots Receiver vent stream (22826FG).

HFP vented based on 16,780 kg in the Stripper vent stream (22231FC).

HFP vented from Condensation Reactor:

HFP vented from Crude Receiver

HFP vented from Foreshots Receiver

0.01 kg HFP x 1,021 kg FsRec = 9 kg HFP
1.06 kg FsRec

HFP vented from Stripper

30 kg HFP x 16,780 kg Strpr = 5,034 kg HFP

100 kg Strpr
VOC Emissions 57 kg from Condensation Reactor
+ 0 kg from Crude Receiver

+ 9 kg from Foreshots Receiver

5,034 kg from Stripper

5,099 kg HFP = 5,099 kg VOC

11,242 lb VOC

B. Hexafluoropropylene oxide (HFPO)

CAS No. 428-59-1

HF Potential:

HFPO is a VOC without the potential to form HF

Quantity Released

HFPO unreacted in condensation is vented to the WGS.

HFPO vented per the proce	ess flowshee	t					
Vented from the	a Candanan	tion Dagator	0.1	0.11 kg HFPO			
vented from th	e Condensa	non Reactor.	2.35 kg	2.35 kg Cond Rx Vent Flow			
Vented from th	e Crude Red	ceiver	(kg HFPO			
			3.97 kg (Crude Re ceiver Vent			
			0 kg HFPO				
Vented from the	e Foreshots	1.06 kg F	oreshotsReceiverVeni				
Vented from th	e Stripper		60 k	g HFPO			
			100 kg	Stripper Vent			
HFPO vented b	ased on	2,450 kg total Con	densation Reactor	vent stream (22266FG).			
HFPO vented b	ased on	_	de Receiver vent stream (22701FG).				
HFPO vented b	ased on	1,021 kg total For	eshots Receiver ver	nt stream (22826FG).			
HFP vented bas	sed on	16,780 kg in the Str					
HFPO vented from Conder	sation Reac	-		X <i>)</i> .			
0.11 kg HFPO	х	2,450 kg CndRx	=	118 kg HFPO			
2.35 kg CndRx		2,100 Ng Ulaiu	•	ng			
HFPO vented from Crude I	Receiver						
0.00 kg HFPO	X	15,726 kg CrRec	-	0 kg HFPO			
3.97 kg CrRec		-		_			
HFPO vented from Foresho	ots Receiver						
0.00 kg HFPO	x	1,021 kg FsRec	=	0 kg HFPO			
1.06 kg FsRec							
HFP vented from Stripper							
60 kg HFPO	x	16,780 kg Strpr	=	10,068 kg HFPO			
100 kg Strpr		•		•			
VOC Emissions		118 kg from Cor	ndensation Reactor				
	+	0 kg from Cru					
	+		eshots Receiver				
	+	10,068 kg from Stri					
=	_ ' -	10,186 kg HFPO	=	10,186 kg VOC			
		10,100 kg 1111 O		22,457 lb VOC			
				22943/ ID YOC			

C. Perfluoropropionyl fluoride (PPF)

CAS No. 422-61-7

HF Potential:

Each mole of PPF (MW = 166) can generate 1 mole of HF (MW = 20). 1 kg PPF. $\frac{1$ molePPF. $\frac{20$ g HF. 1 moleHF. $\frac{1}{1}$ molePPF Therefore, each 1 kg of PPF generates 0.120 kg of HF **Quantity Released** Before-control PPF vented per the process flowsheet 2.14 kg PPF Vented from the Condensation Reactor: 2.35 kg Cond Rx Vent Flow 0 kg PPF Vented from the Crude Receiver 3.97 kg Crude Receiver Vent 0 kg PPF Vented from the Foreshots Receiver 1.06 kg ForeshotsReceiver Vent 10 kg PPF Vented from the Stripper 100 kg Stripper Vent PPF vented based on 2,450 kg total Condensation Reactor vent stream (22266FG). PPF vented based on 15,726 kg total Crude Receiver vent stream (22701FG). PPF vented based on 1,021 kg total Foreshots Receiver vent stream (22826FG).

PPF vented based on 16,780 kg in the Stripper vent stream (22231FC). Before control PPF vented from Condensation Reactor: 2.14 kg PPF 2,450 kg CndRx 2,227 kg PPF 2.35 kg CndRx PPF vented from Crude Receiver 0.00 kg PPF 15,726 kg CrRec 0 kg PPF 3.97 kg CrRec PPF vented from Foreshots Receiver 0.00 kg PPF 1,021 kg FsRec 0 kg PPF 1.06 kg FsRec PPF vented from Stripper 10 kg PPF 16,780 kg Strpr 1,678 kg PPF 100 kg Strpr Total before-control PPF vented 3,905 kg PPF

After-control emissions utilizing the 99.1% control efficient Waste Gas Scrubber (WGS):

VOC Emissions		3,905 kg PAF	
Waste Gas Scrubber	х	(100%-99.1%)	
	=	35 kg PAF =	35 kg VOC
		=	77 lb. VQC
HF Equivalent Emissions		35 kg PAF	
	x	0.120 kg HF/kg PAF	
	=	4 kg HF =	9.3 lb. HF

D. Tetrafluoroethylene (TFE)

CAS No. 116-14-3

HF Potential:

TFE is a VOC without the potential to form HF

Quantity Released

TFE is a byproduct that can be formed in the ABR system. It is an inert in VE-North that is vented to the WGS.

TFE vented per the process flowsheet

· · · · · · · · · · · · · · · · · · ·				
0 kg TFE				
2.35 kg Cond Rx Vent Flow				
0.0012 kg TFE				
3.97 kg Crude Receiver Ven				
0.0045kg TFE				
1.06 kg ForeshotsReceiverVent				
0 kg TFE				
100 kg Stripper Vent				
Reactor vent stream (22266FG).				
r vent stream (22701FG).				
eiver vent stream (22826FG)				
stream (22231FC).				
` '				
= 0 kg TFE				
Ç				

TFE vented based on	16,780	16,780 kg in the Stripper vent stream (22231FC).					
TFE vented from Condens		_		,			
0.00 kg TFE	x		kg CndRx	=	0 kg TFE		
2.35 kg CndRx					-		
TFE vented from Crude R	eceiver						
0.0012 kg TFE	X	15,726	kg CrRec	=	5 kg TFE		
3.97 kg CrRec							
TFE vented from Foresho	ts Receiver						
0.0045 kg TFE	x	1,021	kg FsRec	=	4 kg TFE		
1.06 kg FsRec		•					
TFE vented from Stripper							
0 kg TFE	x	16,780	kg Strpr	=	0 kg TFE		
100 kg Strpr							
VOC Emissions		0	kg from Conde	nsation Reactor			
	+	5	kg from Crude	Receiver			
	+		kg from Foresh				
	+		kg from Strippe	er			
	=	9	kg TFE	=	9 kg VOC		
					20 lb VOC		

E. Perfluoropropyl vinyl ether (PPVE)

CAS No. 1623-5-8

HF Potential:

PPVE is a VOC without the potential to form HF

Quantity Released

Quantity Released				
PPVE vented per the proces	ss flowshee	et		
				kg PPVE
Vented from the	e Condensa	ation Reactor:	2.35 kg (Cond Rx Vent Flow
	0.00)2 kg PPVE		
Vented from the	3.97 kg C	rude Receiver Vent		
			С	.88 kg PPVE
Vented from the	e Foreshots	Receiver	1	oreshotReceiverVent
		•	0 k	g PPVE
Vented from the	e Stripper		100 kg	Stripper Vent
PPVE vented based on	2,450	kg total Condensation Rea	ctor vent stream	(22266FG).
PPVE vented based on		kg total Crude Receiver ve		
PPVE vented based on		kg total Foreshots Receive		
PPVE vented based on		kg in the Stripper vent stre		,
PPVE vented from Conden	sation Read	ctor:		
0.00 kg PPVE	X	2,450 kg CndRx	=	0 kg PPVE
2.35 kg CndRx				
PPVE vented from Crude R	Leceiver			
0.0020 kg PPVE	X	15,726 kg CrRec	= .	8 kg PPVE
3.97 kg CrRec				
PPVE vented from Foresho	ts Receiver			
0.88 kg PPVE 1.06 kg FsRec	x	1,021 kg FsRec	=	847 kg PPVE
_				
PPVE vented from Stripper		16 700 lea Comm	_	A Ira DDVE
0 kg PPVE 100 kg Strpr	х	16,780 kg Strpr	=	0 kg PPVE
VOC Emissions		0 kg from Condo		
	+	8 kg from Crude		
	+	847 kg from Fores		
	+	0 kg from Stripp		
		854 kg PPVE	=	854 kg VOC 1,884 lb VOC

F. Perfluoro-2-butene (C4)

CAS No. 360-89-4

HF Potential:

C4s are VOCs without the potential to form HF

Quantity Released

C4s are perfluorobutenes that are byproducts from the Agitated Bed Reactor system. They are inerts in VE-North that are vented to the WGS.

C4s vented per the process flowsheet

C4s vented per the process	flowsheet				
		0 kg C4s			
Vented from the	e Condensa	tion Reactor:	2.35 kg Cond Rx Vent Flow		
			0.0012 k	g C4s	
Vented from the	e Crude Re	3.97 kg Crude	Re ceiver Ven		
		0.15 kg	· C4s		
Vented from th	e Foreshots	Receiver	1.06 kg Foreshot		
7 Uniod Holli ili					
77 . 10	g. •		0 kg C	4 s	
Vented from th	e Stripper		100 kg Stripp	er Vent	
C4s vented based on			Reactor vent stream (2		
C4s vented based on	15,726	kg total Crude Receive	er vent stream (22701F	G).	
C4s vented based on			eiver vent stream (2282		
C4s vented based on		kg in the Stripper vent		,	
C4s vented from Condensa	tion Reacto	r''			
0.00 kg C4s		2,450 kg CndRx	<u> </u>	0 kg C4s	
	X	2,430 kg Cliukx	_	0 kg C48	
2.35 kg CndRx			•		
C4s vented from Crude Re	ceiver		4		
0.0012 kg C4s	X	15,726 kg CrRec	=	5 kg C4s	
3.97 kg CrRec					
C4s vented from Foreshots	Receiver				
0.15 kg C4s	x	1,021 kg FsRec	=	144 kg C4s	
1.06 kg FsRec		, 0		Ü	
C4s vented from Stripper					
0 kg C4s	х	16,780 kg Strpr	_	0 kg C4s	
100 kg Strpr	Λ	10,760 kg Supi		0 kg C43	
100 kg Supi					
VOC Emissions		•	ondensation Reactor		
	+		rude Receiver		
	+	144 kg from Fe	oreshots Receiver		
	+	0 kg from S			
. =	= '	149 kg C4s	=	149 kg VOC	
		Č		328 lb VOC	

G. Perfluoropentene (C5)

CAS No. 376-87-4

HF Potential:

C5s are VOCs without the potential to form HF

Quantity Released

C5s are perfluoropentenes that are byproducts from the Agitated Bed Reactor system. They are inerts in $\,$ VE-North that are vented to the WGS.

C5s vented per the process flowsheet

Cas vented per the proces	ss nowsneet				
			0 kg C5s		
Vented from	the Condens	ation Reactor:	2.35 kg Cond	Rx Vent Flow	
		0 kg	C5s		
Vented from	the Crude R	3.97 kg Crude	Re ceiver Ven		
Vented from	the Foreshot	0.02 kg	C5s		
			1.06 kg Foreshot	:ReceiverVeni	
Vented from	the Stripper		0 kg C	5 s	
		•	100 kg Stripp	er Vent	
C5s vented based on	2,450	kg total Condensation	Reactor vent stream (2	2266FG).	
C5s vented based on	15,726	kg total Crude Receive			
C5s vented based on	1.021	kg total Foreshots Rec			
C5s vented based on	16,780	kg in the Stripper vent			
C5s vented from Condens	sation React	or:	·		
0.00 kg C5s	x	2,450 kg CndRx	=	0 kg C5s	
2.35 kg CndRx	-				
C5s vented from Crude R	leceiver				
0.00 kg C5s	X	15,726 kg CrRec	=	0 kg C5s	
3.97 kg CrRec	_		,		
C5s vented from Foresho	ts Receiver				
0.02 kg C5s	x	1,021 kg FsRec	=	17 kg C5s	
1.06 kg FsRec			-		
C4s vented from Stripper				•	
0 kg C5s	x	16,780 kg Strpr	=	0 kg C5s	
100 kg Strpr					
VOC Emissions			ondensation Reactor		
	+	0 kg from Cr			
	+	17 kg from Fo	reshots Receiver		
	+	0 kg from St	ripper		
	=	17 kg C5s	=	17 kg VOC 38 lb VOC	

H. Carbon Dioxide (CO2)

CAS No. 124-38-9

HF Potential:

CO2 can not form HF

Quantity Released

CO2 is a byproduct from the Agitated Bed Reactor system. They are inerts in VE-North that are vented to the WGS.

CO2 vented per the process flowsheet

COZ venteu per ino process i	HOWBILL				
				0 kg CO	
Vented from the	Condensatio	n Reactor:	2.35 kg Cond Rx Vent Flow		
			1.27 kg CO		
Vented from the	Crude Recei	ver	3.97 kg C	rude Re ceiver Ve	nt
		1			<u></u>
				0 kg CO	_
Vented from the	Foreshots Re	eceiver	1.06 kg Fo	reshotsReceiverVer	ı t
			0	kg CO	
Vented from the	Stripper		100 kg	Stripper Vent	
CO2 vented based on	2.450 kg	total Condensation I	Reactor vent st	ream (22266EG)	
CO2 vented based on		total Crude Receiver			
		•		•	
CO2 vented based on	_	total Foreshots Rece			
CO2 vented based on	16,780 kg	in the Stripper vent	stream (22231	FC).	
CO2 vented from Condensat	ion Reactor:				
0.00 kg CO2	x	2,450 kg CndRx	=	0 kg CO2	
2.35 kg CndRx					
· · ·					
CO2 vented from Crude Rec	airea#			•	
		15 726 Ira CuDaa	_	12 692 Inc CO2	
3.45 kg CO2	X	15,726 kg CrRec	_	13,682 kg CO2	
3.97 kg CrRec					
CO2 vented from Foreshots	Receiver				
0.00 kg CO2	X	1,021 kg FsRec	. =	0 kg CO2	
1.06 kg FsRec					
CO2 vented from Stripper					
0 kg CO2	x	16,780 kg Strpr	_	0 kg CO2	
	Λ .	10,760 kg 5upi		0 kg CO2	
100 kg Strpr		0.1	damaatlan Da		
CO2 Emissions		•	ndensation Re	actol	
	+	13,682 kg from Cr			
	+		reshots Receiv	er	
	+ _	0 kg from Str	ripper		
=		13,682 kg CO2	=	30,163 lb CO2	(not a VOC)

I. Acetonitrile (AN)

CAS No. 75-05-8

HF Potential

AN is a VOC and Hazardous Air Polluntant without the potential to form HF.

Quantity Released

AN emissions based on

11,776 kg AN fed

Hydrocarbon waste sent to Hydrocarbon waste tank =

11,776 kgs H/C waste

PPVE generated during the year

202,957 kg PPVE

Assume that:

5% of spent acetonitrile are fluorocarbons.

AN portion of hydrocarbon waste stream:

x (1-(.1)) = 11,187 kg AN to H/C waste

Material Balance

Based on total Vinyl ether produced

202,957 kg PPVE

Assume

90% Crude is needed to generage that amount of PPVE 70% of AF going to ABR is needed to create the Crude

Feed going to ABR is 1,500 ppm AN 1,000,000

Therefore:

202,957 kg PPVE 0.90 Crude 0.70 AF 0.0015 ppm AN 483 kg AN in Feed to ABR

VOC Emission

11,776 kg AN fed 11,187 kg AN to H/C waste 483 kg AN to ABR 106 kg AN

> 106 kg VOC 233 lb VOC

AN only used during a PPVE Campaign

Total AN

233 **Ib VOC**

J. VOC Summary

			Before Control Generated	
Nafio	n Compound Name			VOC
		kg/yr	lb/yr	lb/yr
A.	HFP	5,099	11,242	11,242
B.	HFPO	10,186	22,457	22,457
C.	PPF	3,905	8,610	77
D.	TFE	9	20	20
Ē.	PPVE	854	1,884	1,884
F.	C4	149	328	328
G.	C5	17	38	38
ī.	AN	106	233	233
	Total	20,326	44,812	36,279

K. Total Emission Summary**

** All Emissions in this table represent "After Control" emissions.

Na	fion Compound Name	Process Emissions . lb/yr	Equipment Emissions (Note I) Ib/yr	Maintenance Emissions ^(Note 2) lb/yr	Total Emissions lb/yr
A.	HFP	11,242	5	0	11,247
B.	HFPO	22,457	331	15	22,803
C.	PPF	. 77	0	1	79
D.	TFE	20	0	0	20
E.	PPVE	1,884	543	441	2,868
F.	C4	328	53	59	440
G.	C5	38	0	0	38
H.	CO2 (not a VOC)	30,163	0	0	30,163
I.	AN	233	136	6	375
*	HFPO-Dimer		7	31	38
*	HFPO Trimer		0	1	1
	Total	66,443	1,075	555	68,072

Note 1 - See section titled "Equipment Emissions" for details

Note 2 - See section titled "Maintenance Emissions" for details

CO not realistically expected through equipment or maintenance emissions

AN total based on material balance, see section K.

* Not normally emitted from the process as a routine stack emission

L. HF Equivalent Emissions

Nation Compound Name		Process Emissions lb/yr	Equipment Emissions lb/yr	Maintenance Emissions lb/yr	Total Emissions lb/yr
C.	PPF	9,3	0.0	0.13	9.47
*	HFPO-Dimer		0.4	1.86	2.27
*	HFPO Trimer		0.0	0.03	0.03
	Total	9.3	0	2.01	11.77

^{*} Not normally emitted from the process as a routine stack emission

The estimated HF equivalent emissions were determined by multiplying the total emission quantity of an acid fluoride by the ratio of the molecular weight of HF divided by the molecular weight of the specific acid fluoride. This is based on the fact that one mole of an acid fluoride will generate one mole of HF.

For example, if 100 lb. of PPF was emitted:

20	lb/mol HF	×	100	lb/yr Equipment PPF	=	12.0	lb/yr HF
166	lb/mol PPF			•			

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No:

NS-B

Emission Source Description:

VE-North EVE Manufacturing Process

Process & Emission Description: The VE-North EVE manufacturing process is a continuous chemical reaction. All emissions from the process are vented through the Nafion Division Waste Gas Scrubber (Control Device ID No. NCD-Hdr) which has a documented control efficiency of 99.1% for all acid fluoride compounds. Some emitted compounds are assumed to pass completely through the scrubber, so the control efficiency for those compounds is assumed to be 0%. The control of emissions of specific compounds will be addressed and detailed in the following pages.

The EVE process in VE-North emits compounds in the acid fluoride family. In the presence of water (such as in atmospheric moisture), these acid fluorides can eventually hydrolyze to hydrogen fluoride. For the purpose of this emissions inventory, a conservative approach will be taken and the acid fluorides will be reported both as a VOC and as the equivalent quantity of hydrogen fluoride.

Basis and Assumptions:

- The EVE process flowsheet is the basis for relative concentrations of before-control emissions of gaseous wastes.
- Calculations of point source emissions are based on actual vent flow totals taken from the IP21 Historian.

Point Source Emission Determination

A. Hexafluoropropylene (HFP)

CAS No. 116-15-4

146 lb VOC

HF Potential:

HFP is a VOC without the potential to form HF

Quantity Released

HFP is a byproduct present in the HFPO feed. It is an inert in VE-North that is vented to the WGS.

HFP vented per the proc	ess flowsheet			
in i vented per the proc	obs 110 visitor		0.17k	gHFP
Vented from	the Condensation Reactor:			dRxVentFlov
Vented from	the Crude Receiver		0 kg	HFP
			15.91 kg Crude	Re <i>ceiver Vent</i>
	•		0 kg	HFP
Vented from	the Foreshots Receiver			hotsReceiverVent
HFP vented	•	_	ensation Reactor ven	, ,
HFP vented HFP vented		2,589 kg total Crude Receiver vent stream (22701FG).2 kg total Foreshots Receiver vent stream (22826FG).		
HFP vented from Conde	nsation Reactor:			·
0.17 kg HFP	X	190 kg CndRx	. =	66 kg HFP
0.50 kg CndRx			•	
HFP vented from Crude	Receiver			•
0.00 kg HFP	<u>x</u>	2,589 kg CrRec	=	0 kg HFP
15.91 kg CrRec				
HFP vented from Foresh	ots Receiver			
0.00 kg HFP	x	2 kg FsRec	=	0 kg HFP
0.14 kg FsRec				
VOC Emissions		66 kg from Cond	ensation Reactor	
	+	0 kg from Crude	Receiver	
	+	0 kg from Fores	hots Receiver	
	=	66 kg HFP	=	66 kg VOC

B. Hexafluoropropylene oxide (HFPO)

CAS No. 428-59-1

HF Potential:

HFPO is a VOC without the potential to form HF

Quantity Released

HFPO unreacted in condensation is vented to the WGS.

HFPO vented per the process flowsheet

Vented from the Condensation Reactor:

0.13 kg HFPO 0.50 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg HFPO 15.91 kg Crude Receiver Vent

Vented from the Foreshots Receiver

0 kg HFPO 0.14 kg ForeshotsReceiverVent

HFPO vented based on HFPO vented based on HFPO vented based on 190 kg total Condensation Reactor vent stream (22266FG).2,589 kg total Crude Receiver vent stream (22701FG).2 kg total Foreshots Receiver vent stream (22826FG).

HFPO vented from Condensation Reactor:

0.13 kg HFPO 20.50 kg CndRx

190 kg CndRx

49 kg HFPO

HFPO vented from Crude Receiver

0.00 kg HFPO :

2,589 kg CrRec

0 kg HFPO

HFPO vented from Foreshots Receiver

0.00 kg HFPO x 0.14 kg FsRec 2 kg FsRec

0 kg HFPO

VOC Emissions

49 kg from Condensation Reactor0 kg from Crude Receiver

0 kg from Foreshots Receiver
49 kg HFPO ==

HFPO = 49 kg VOC 108 lb VOC Air Emissions Inventory

C. Perfluoro-2-Propoxy Propionyl Fluoride (HFPO Dimer)

CAS No. 2062-98-8

HF Potential:

Each mole of HFPO Dimer (MW = 332) can generate 1 mole of HF (MW = 20).

$$1 kg Dimer \frac{1 moleDimer}{332g Dimer} \cdot \frac{20g HF}{1 moleHF} \cdot \frac{1 moleHF}{1 moleDimer} = 0.06 kg HF$$

Therefore, each 1 kg of HFPO Dimer generates

0.060 kg of HF

Quantity Released

Before-control HFPO Dimer vented per the process flowsheet

Vented from the Condensation Reactor:

0.05 kg HFPODimer 0.50 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0 kg HFPO Dimer 15.91 kg Crude Re ceiver Vent

Vented from the Foreshots Receiver

0 kg HFPODimer
0.14 kg ForeshotsReceiverVent

HFPO Dimer vented based on

190 kg total Condensation Reactor vent stream (22266FG).

HFPO Dimer vented based on

2,589 kg total Crude Receiver vent stream (22701FG).

HFPO Dimer vented based on

2 kg total Foreshots Receiver vent stream (22826FG).

Before control HFPO Dimer vented from Condensation Reactor:

0.05 kg HFPO Dimer	x	190 kg CndRx	=	19 kg HFPO Dimer
0.50 kg CndRx				

HFPO Dimer vented from Crude Receiver

 0.00 kg HFPO Dimer
 x
 2,589 kg CrRec
 =
 0 kg HFPO Dimer

 15.91 kg CrRec
 =
 0 kg HFPO Dimer

HFPO Dimer vented from Foreshots Receiver

0.00 kg HFPO Dimer x 2 kg FsRec = 0 kg HFPO Dimer 0.14 kg FsRec

Total before-control HFPO Dimer vented

19 kg HFPO Dimer

After-control emissions utilizing the 99.1% control efficient Waste Gas Scrubber (WGS):

VOC Emissions 19 kg Dimer

Waste Gas Scrubber x (100%-99.1%)

0.17 kg Dimer 0.17 kg VOC = **0.38 lb. VOC**

HF Equivalent Emissions

0.17 kg Dimer c 0.060 kg HF/kg Dimer

0.01 kg HF **0.02 lb. HF**

D. Tetrafluoroethylene (TFE)

CAS No. 116-14-3

HF Potential:

TFE is a VOC without the potential to form HF

Quantity Released

TFE is a byproduct that can be formed in the ABR system. It is an inert in VE-North that is vented to the WGS.

TFE vented per the process flowsheet

190 kg total Condensation Reactor vent stream (22266FG). TFE vented based on TFE vented based on 2,589 kg total Crude Receiver vent stream (22701FG). TFE vented based on 2 kg total Foreshots Receiver vent stream (22826FG). TFE vented from Condensation Reactor: 0 kg TFE 0.00 190 kg CndRx 0.50 kg TFE kg CndRx TFE vented from Crude Receiver 28 kg TFE 2,589 kg CrRec 0.18 15.91 kg TFE kg CrRec TFE vented from Foreshots Receiver 0 kg TFE 0.00 2 kg FsRec 0.14 kg TFE kg FsRec 0 kg from Condensation Reactor **VOC Emissions** 28 kg from Crude Receiver 0 kg from Foreshots Receiver 28 kg VOC 28 kg TFE 63 lb VOC

E. Methyl Perfluoro (5-(Fluoroformyl) -4-Oxahexanoate) (MAE)

CAS No. 69116-72-9

HF Potential:

Each mole of MAE (MW = 322) can generate 1 mole of HF (MW = 20).

$$1 kg MAE \cdot \frac{1 moleMAE}{322g MAE} \cdot \frac{20g HF}{1 moleHF} \cdot \frac{1 moleHF}{1 moleMAE} = 0.062 kg HF$$

Therefore, each 1 kg of MAE generates

0.062 kg of HF

Quantity Released

VOC Emissions

Before-control MAE vented per the process flowsheet

MAE vented based on 190 kg total Condensation Reactor vent stream (22266FG).

MAE vented based on 2,589 kg total Crude Receiver vent stream (22701FG).

MAE vented based on 2 kg total Foreshots Receiver vent stream (22826FG).

Before control MAE vented from Condensation Reactor: 0 kg MAE $0.00~{
m kg~MAE}$ 190 kg CndRx 0.50 kg CndRx MAE vented from Crude Receiver 0 kg MAE 0.00 kg MAE 2,589 kg CrRec 15.91 kg CrRec MAE vented from Foreshots Receiver 0.04 kg MAE 2 kg FsRec 1 kg MAE 0.14 kg FsRec 1 kg MAE Total before-control MAE vented

After-control emissions utilizing the 99.1% control efficient Waste Gas Scrubber (WGS):

1 kg MAE

F. Propanoic Acid, 3-[1-[Difluoro [(Trifluoroethenyl) oxy] Methyl]-1,2,2,2-Tetrafluoroethoxy]-2,2,3,3 -Tetrafluoro-, Methyl Ester (EVE)

CAS No. 63863-43-4

HF Potential:

EVE is a VOC without the potential to form HF

Quantity Released

EVE vented per the process flowsheet

Vented from the Condensation Reactor:

0 kg EVE 0.50 kg Cond Rx Vent Flow

Vented from the Crude Receiver

0~kg~EVE15.91 kg Crude Receiver Vent

 $0.005kg\ EVE$

Vented from the Foreshots Receiver

0.14 kg ForeshotsReceiver Vent

EVE vented based on

190 kg total Condensation Reactor vent stream (22266FG).

EVE vented based on

2,589 kg total Crude Receiver vent stream (22701FG).

EVE vented based on

2 kg total Foreshots Receiver vent stream (22826FG).

EVE vented from Condensation Reactor:

DID I THE CONCERNS	auton itemptori			
0.00	X	190 kg CndRx	= :	0 kg EVE
0.50 kg EVE				
kg CndRx	_			
EVE vented from Crude Re	eceiver			
0.00	X	2,589 kg CrRec	==	0 kg EVE
15.91 kg EVE				
kg CrRec				
EVE vented from Foreshots	s Receiver			
0.005	X	2 kg FsRec	=	0 kg EVE
0.14 kg EVE				
kg FsRec	_			
VOC Emissions	+	0 kg from Condens	ation Reactor	
	. +	0 kg from Crude Re	eceiver	
		0 1 C E14	- m t	

0 kg from Foreshots Receiver 0 kg EVE

0 kg VOC 0 lb VOC

G. Tetraglyme (TTG)

CAS No. 143-24-8

The emissions of Tetraglyme is based on a mass balance.

Quantity Released

=	148	kg TTG introduced into processes
=	148	kg TTG transferred to H/C waste tank
=	0	kg TTG unaccounted for and assumed emitted
=	0	lb. Tetraglyme

Emissions of TTG from EVE =

0 lb. Tetraglyme

H. Carbon Monoxide (CO) CAS No. 630-08-0 HF Potential: CO can not form HF Quantity Released CO is a byproduct from the Agitated Bed Reactor system. vented to the WGS. CO vented per the process flowsheet 0 kg CO 0.50 kg Cond Rx Vent Flow Vented from the Condensation Reactor: 0.59 kg CO 14.91 kg Crude Receiver Vent Vented from the Crude Receiver 0 kg CO 0.14 kg ForeshotsReceiverVent Vented from the Foreshots Receiver CO vented based on 190 kg total Condensation Reactor vent stream (22266FG). CO vented based on 2,589 kg total Crude Receiver vent stream (22701FG). CO vented based on 2 kg total Foreshots Receiver vent stream (22826FG). CO vented from Condensation Reactor: 0.00 kg CO 190 kg CndRx 0 kg CO 0.50 kg CndRx CO vented from Crude Receiver 0.59 kg CO 2,589 kg CrRec 96 kg CO 15.91 kg CrRec CO vented from Foreshots Receiver 0.00 kg CO 2 kg FsRec 0 kg CO 0.14 kg FsRec **CO** Emissions 0 kg from Condensation Reactor

96 kg from Crude Receiver 0 kg from Foreshots Receiver

211 lb CO

(not a VOC)

96 kg CO

I. Adiponitrile

CAS No. 111-69-3

HF Potential

ADN is a VOC and Hazardous Air Polluntant without the potential to form HF.

Quantity Released

ADN emissions based on

1,479 kg ADN fed

VE North ADN Sent to waste Hydrocarbon tank =

1,479 kgs H/C waste

VOC Emission

1,479 kg ADN fed 1,479 kg ADN to H/C waste 0 kg ADN lost

0 kg VOC 0 lb VOC

ADN only used during an EVE Campaign

J. VOC Summary

		Before Gener		After Control Stack Emissions
Nafio	n Compound Name			VOC
		kg/yr	lb/yr	lb/yr
A.	HFP	66	146	146
В.	HFPO	49	108	108
C.	HFPO-Dimer	19	42	0
D.	TFE	28	63	63
E.	MAE	1	1	0.0
F.	EVE	0	0	0.1
G.	TTG	0	0	0
K.	ADN	0	0	0
	Total	163	360	317.4

K. Total Emission Summary**

** All Emissions in this table represent "After Control" emissions.

N	afion Compound Name	Process Emissions lb/yr	Equipment Emissions (Note 1) lb/yr	Maintenance Emissions (Note 2) lb/yr	Total Emissions lb/yr
A.	HFP	146	1	0	147
В.	HFPO	108	35	2	145
C.	HFPO-Dimer	0	0	0	1
D.	TFE	63	0	0	63
E.	MAE	0	0	1	2
F.	EVE	0	70	0	71
G.	TTG	0	2	. 0	2
Η.	CO (not a VOC)				211
I.	ADN		15	1	0 .
*	DAE		0	2	3
*	TAE		0	0	0
*	MMF	.	0	0	0
*	hydro-EVE		3	3	6
*	iso-EVE		6	4	10
	Total	317	133	13	659

Note 1 - See section titled "Equipment Emissions" for details

Note 2 - See section titled "Maintenance Emissions" for details

- H. CO not realistically expected through equipment or maintenance emissions. Not a VOC
- I. ADN total based on material balance, see section I.
- * Not normally emitted from the process as a routine stack emission

Total Non AF ##

Total AF

L. HF Equivalent Emissions

N	afion Compound Name	Process Emissions Ib/yr	Equipment Emissions lb/yr	Maintenance Emissions lb/yr	Total Emissions lb/yr
C.	HFPO-Dimer	0.000	0.001	0.014	0.015
E.	MAE	0.000	0.008	0.091	0.099
*	DAE		0.019	0.092	0.111
*	TAE		0.000	0.003	0.003
*	MMF		0.003	0.037	0.041
	Total	0.00	0.03	0,24	0.27

^{*} Not normally emitted from the process as a routine stack emission

The estimated HF equivalent emissions were determined by multiplying the total emission quantity of an acid fluoride by the ratio of the molecular weight of HF divided by the molecular weight of the specific acid fluoride. This is based on the fact that one mole of an acid fluoride will generate one mole of HF.

For example, if 100 lb. of MAE was emitted:

 20	lb/mol HF	×	100	lb/yr Equipment MAE	=	6.0 lb/yr HF
332	lb/mol MAE	, ,				

2015 Maintenance Emission Determination

A. Background

Periodically, the process vessels in the VE-North plant are emptied for campaign switches and for maintenance. During the deinventory process, the liquid is transferred to another process vessel and then the gases are evacuated to the division waste gas scrubber. The amount of gasses from the condensation reactor, crude receiver and foreshots receiver are already included in the vent flowmeter readings used to calculate emissions in previous sections. This section estimates maintenance emissions for the rest of the major process vessels.

B. Condensation Tower

Assume the following:

- (a) void fraction in distillation columns is 40%
- (b) ideal gas behavior
- (c) vessels are at atmospheric pressure
- (d) ambient temperature (25 deg C)
- (e) gases are 68% acid fluorides and 32% non-acid fluorides
- (f) average molecular weight (MW) for acid fluoride component based on the average computed from composite composition as shown on "Vessel Compositions" worksheet. Therfore the average molecular weight for condensation is 354
- (g) average MW for non-acid fluoride component = 166 (average of HFPO & HFP)
- (h) number of deinventory events = 7

List of Process Vessels

Condensation Tower	Volume (ft ³)	Volume (gallons)
Reactor Decanter	5	41
Stripper Feed Decanter	7	51
Stripper Overhead Receiver	5	40
A/F Column	27	203_
A/F Overhead Receiver	14	106
A/F Tails Decanter	1	10
ABR Feed Tank	27	202
Total Volume	87	654

VOC Emissions

n = PV/RT, where
$$P = 14.7$$
 psia $R = 10.73$ psia-ft³/lb-mol deg R $V = 87$ ft³ $T = 537$ degrees R

$$\frac{n = PV}{RT} = \frac{14.7 \text{ psia}}{10.73} \times \frac{87 \text{ ft}^3}{\text{lb-mol deg R}} = 0.22 \frac{\text{lb-mol gas}}{\text{deinventory event}}$$

$$\frac{1.56 \quad \underline{\text{lb-mol gas}}}{\text{year}} \times 32\% \text{ non-acid fluorides} \times 166 \quad \underline{\text{lb non-A/F}}}{\text{lb-mol gas}} = 83.8 \quad \underline{\text{lb non-A/F}}}{\text{year}}$$

Before-control A/F vented from Condensation:

$$\frac{1.56 \quad \text{lb-mol gas}}{\text{year}} \quad \times \quad 68\% \text{ acid fluorides} \quad \times \quad 354 \quad \frac{\text{lb A/F}}{\text{lb-mol gas}} \quad = \quad 373 \quad \frac{\text{lb A/F}}{\text{year}}$$

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

C. Refining

Assume the following:

- (a) void fraction in distillation columns is 40%
- (b) ideal gas behavior
- (c) vessels are at atmospheric pressure
- (d) ambient temperature (25 deg C)
- (e) gases are 100% vinyl ethers which are 100% VOC
- (f) average molecular weight (MW) for vinyl ether component based on the average computed from composite composition as shown on "Vessel Compositions" worksheet.
 Therfore the average molecular weight for refining is 290
- (g) number of deinventory events =

HF Potential

Vinyl ethers are VOCs without the potential to form HF

List of Process Vessels

Refining	Volume (ft ³)	Volume (gallons)
Ether Still	107	803
Ether Still Overhead Receiver	9	69
Product Receiver	46	348
Total Volume	163	1220

VOC Emissions

n = PV/RT, where P = 14.7 psia R = 10.73 psia-ft³/lb-mol degR V = 163 ft³ T = 537 degrees R

$$n = \frac{PV}{RT} = \frac{14.7 \text{ psia}}{10.73} \frac{\times 163 \text{ ft}³}{\text{psia-ft}³} \times 537 \text{ deg R} = 0.42 \frac{\text{lb-mol gas}}{\text{deinventory event}}$$

$$0.42 \frac{\text{lb-mol gas}}{\text{deinventory event}} \times 7 \frac{\text{deinventory events}}{\text{year}} = 2.91 \frac{\text{lb-mol gas}}{\text{year}}$$

$$2.91 \frac{\text{lb-mol gas}}{\text{year}} \times 290 \frac{\text{lb VOC}}{\text{lb-mol gas}} = 844.3 \frac{\text{lb VOC}}{\text{year}}$$

D. Component Summary - All maintenance emissions

Component	EVE	PPVE	PSEPVE
	lb	lb	lb
HFP	0	0	27
HFPO	2	15	6
HFPO-Dimer	0	31	. 0
PPF	0	1	0 -
Diglyme	0	0	3
AN	0	6	0
ADN	1	0	0
TTG	0	0	0
DA	0	0	12
MA	0	0	5
TA	0	0	0
RSU	0	0	0
MAE	1	0	0
MMF	0	0	0
DAE	2	0	0
TAE	0	0	0
HFPO Trimer	0	1	0
EVE *	0	0	0
PPVE	0	441	0
PSEPVE **	0	0	0
hydro-EVE	3	0	0
iso-EVE	4	0	0
C4	0	59	20

Composite compositions for each area, Condensation, ABR, and Refining, were determined on the Vessel Composition worksheet, taking into account run hours on each campaign and approximate compositions. The mass fraction for each component was then multiplied by the VOC from these areas.

Campaign	EVE	PPVE	PSEPVE
Campaign Fract'n	0.08	0.60	0.32
Cond VOC	7	51	_ 28
Refining VOC	67	504	274

Pre-control VOC	103	776	422

Total before control VOC (lb.)	1301
Total after control VOC	928

- * this is very conservative, since EVE will be liquid at ambient temp
- ** this is very conservative, since PSEPVE will be liquid at ambient temp

2015 Equipment Emissions Determination

Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). For the equipment emission calculations the inventory shown below is conservative and based on plant and process diagrams. Note that the division scrubber efficiency is 99.6% for control of acid fluorides.

A. Equipment Emissions from Condensation Reactor System

Condensation Towe	er (vents to stack)	* Emission Factors four	nd on Fugitive Emissi	on Leak rates worksheet
Valve emissions:	462 valves	Х	0.00039 lb/hr/s	valve =	0.180 lb/hr VOC from EE
Flange emissions:	924 flanges	Χ	0.00018 lb/hr/fl	ange =	0.166 lb/hr VOC from EE
Pump emissions:	0 pumps	Χ	0.00115 lb/hr/p	oump =	0.000 lb/hr VOC from EE
•			Total fugitive emis	ssion rate =	0.347 lb/hr VOC from EE

Condensation Tower VOC by campaign

Campaign	EVE	PPVE	PSEPVE
Operating Hours	431	3,240	1,760
Total VOC generated per campaign	149	1123	610

		After			•	After
Component	EVE	control**	PPVE	After control**	PSEPVE	control**
	lb	lb	lb	lb	lb	lb
HFP	1	1	5	5	1	1
HFPO	35	35	331	331	141	141
HFPO-Dimer	5	0	613	2	8	0
PPF	1	0	23	0	1	0
Diglyme	0	0	0	0	70	70
AN '	0	0	136	136	0	0
ADN	15	15	0	0	0	0
TTG	2	2	0	0	0	0
DA	0	0	0	0	257	1
MA	0	0	0	0	115	0
TA	0	0	0	0	9	0
RSU	0	0	0	0	1_	0
MAE	32	0	0	0	0	0
MMF	6	0	0	0	0	0
DAE	49	0	0	0	0	0
TAE	2	0	0	0	0	0
HFPO Trimer	0	0	15	0	6	0
Total	149	53	1,123	474	610	214

Note: Speciated equipment emissions were estimated by assuming typical volumes of each component in the system, and applying the fraction of each component to the total estimated emissions. The worksheet "vessel compositions" shows the factors used in this calculation.

B. Equipment Emissions from Agitated Bed Reactor System

Valve emissions:	85 valves	Х	0.00039 lb/hr/valve	=	0.033	lb/hr VOC from EE
Flange emissions:	170 flanges	Х	0.00018 lb/hr/flange	=	0.031	lb/hr VOC from EE
Pump emissions:	0 pumps	Х	0.00115 lb/hr/pump	==	0.000	lb/hr VOC from EE
			Total fugitive emission ra	ate =	0.064	lb/hr VOC from EE

ABR/crude VOC by campaign

Campaign	EVE	PPVE	PSEPVE
Operating Hours	430.7345	3,240	1,760
Total VOC per campaign	27.45932	207	112

Component	EVE	PPVE	PSEPVE
	lb	Ib	lb
HFP	0	0	8
HFPO-Dimer	0	2	0
EVE	23	0	0
PPVE	0	198	0
DA	0	0	1
DAE	0	0	0
PSEPVE	0	0	98
hydro-EVE	1	. 0	0
iso-EVE	2	0	0
C4	0	6	6
Total	2.7	207	112

Worst case, assume all acid fluorides are released in the portion of the feed line outside the ABR room and are not removed by the WGS.

C. Equipment Emissions from Refining System

Valve emissions:	162 valves	Х	0.00039 lb/hr/va	alve =	0.063	lb/hr VOC from EE
Flange emissions:	324 flanges	Х	0.00018 lb/hr/fla	nge =	0.058	lb/hr VOC from EE
Pump emissions:	0 pumps	Х	0.00115 lb/hr/pu	ımp =	0.000	lb/hr VOC from EE
-			Total fugitive emiss	ion rate =	0.122	lb/hr VOC from EE

Refining System VOC by campiagn

Campaign	EVE	PPVE	PSEPVE
Operating Hours	430.7345	3,240	1,760
Total VOC per campaign	52.33424	394	214

Component	EVE	PPVE	PSEPVE
	lb	lb	lb
HFP	. 0	0	21
HFPO-Dimer	0	2	0
EVE	47	0 .	0
PPVE	0	345	0
PSEPVE	0	0	177
hydro-EVE	2	0	0
iso-EVE	3	0	0
C4	0	46	15
Total	52	394	214

All Refining equipment is located outside of the tower so releases will be directly to atmosphere.

D. Component Summary - All equipment emissions

Component	EVE	PPVE	PSEPVE	Total	
	lb	lb	lb	lb	
HFP	1	5	31	36	
HFPO	35	331	141	507	
HFPO-Dimer	0	7_	0	7	
PPF	0	0	0	0	
Diglyme	0	0	70	70	
AN	0	136	0	136	
ADN	15	0	0	15	
TTG	2	0 0		2	
DA	0	0	2	2	
MA	. 0	0	0	0	
TA	0	0	0	0	
RSU	0	0	0	0	
MAE	0	0	0	0	
MMF	0	0	0	0	
DAE	0	0	0	. 0	
TAE	0	0	0	0	
HFPO Trimer	0	0	0	0	
EVE	70	0	0	70	
PPVE	0	543	0	543	
PSEPVE	0	0	275	275	
hydro-EVE	3	0	0	3	
iso-EVE	6	0	0	6	
C4	0	53	21	74	
				1747	

Vinyl Ethers South Process
NS-C

2015 Emission Summary

A. VOC Emissions Summary

Nafion® Compound	CAS Chemical Name	CAS No.	PE/PM Emissions (lb.)	PPVE Emissions (lb.)	Accidental Releases (lb.)	Total Emissions (lb.)
COF2	Carbonyl Fluoride	353-50-4	644	0	0	644
PAF	Perfluoroacetyl Fluoride	354-34-7	772	0	0	772
PMPF	Perfluoromethoxypropionyl fluoride	2927-83-5	1,090	0	0	1,090
PEPF	Perfluoroethoxypropionyl fluoride	1682-78-6	407	0	0	407
PMVE	Perfluoromethyl vinyl ether	1187-93-5	20,482	0	0	20,482
PEVE	Perfluoroethyl vinyl ether	10493-43-3	1,177	0	0	1,177
HFP	Hexafluoroproplyene	116-15-4	4,087	0	0	4,087
HFPO	Hexafluoroproplyene Epoxide	428-59-1	4,425	0	0	4,425
AN	Acetonitrile	75-05-8	1,606	0	0	1,606
HFPO Dimer	Perfluoro-2-Propoxy Propionyl Fluoride	2062-98-8	6	0	0	6
MD			56	0	0	56
HydroPEVE			11	0	0	11
PPVE	Perfluoropropyl vinyl ether	1623-05-8	11	0	0	11
PPF	Perfluoropropionyl fluoride	422-61-7	0	0	0	0
TFE	Tetrafluoroethylene	116-14-3	0	.0	0	0
C4	Perfluoro-2-butene	360-89-4	0	0	0	0
C5	Perfluoropentene	376-87-4	0	0	0	0
				Total VOC	Emissions (lb.)	34,776
				Total VOC Er	nissions (tons)	17.39

B. Criteria Pollutant Summary

Nafion® Compound	CAS Chemical Name	CAS No.	Process Emissions (lb.)	Accidental Releases (lb.)	Total Emissions (lb.)
CO	Carbon Monoxide	630-08-0	0	0	0
			Total CO	Emissions (lb.)	0
			Total CO Er	nissions (tons)	0.0

C. Toxic Air Pollutant and Hazardous Air Pollutant Summary (TAPS/HAPS)

Nafion® Compound	CAS Chemical Name	CAS No.	Process Emissions (lb.)	Accidental Releases (lb.)	Total Emissions (lb.)
HF .	Hydrogen Fluoride	7664-39-3	648	0	648
Acetonitrile	Acetonitrile	75-05-8	1,606	0	1,606

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No:

NS-C

Emission Source Description:

VE-South PEVE / PMVE Manufacturing Process

Process & Emission Description: The VE-South PEPM manufacturing process is a continuous chemical reaction. All emissions from the process are vented through the VE-South Waste Gas Scrubber (Control Device ID No. NCD-Hdr2) which has a documented control efficiency of 99.6% for all acid fluoride compounds. Some emitted compounds are assumed to pass completely through the scrubber, so the control efficiency for those compounds is assumed to be 0%. The control of emissions of specific compounds will be addressed and detailed in the following pages.

The PEPM process in VE-South emits compounds in the acid fluoride family. In the presence of water (such as in atmospheric moisture), these acid fluorides can eventually hydrolyze to hydrogen fluoride. For the purpose of this emissions inventory, a conservative approach will be taken and the acid fluorides will be reported both as a VOC and as the equivalent quantity of hydrogen fluoride.

Basis and Assumptions:

A process flowsheet, developed from operating data during a typical month, May 2005, is the basis for relative concentrations of before-control emissions of gaseous wastes.

- The flowsheet is available under the "flowsheet" tab for reference and includes the basis for ratios used in this calculation.

 Because an overall material balance for the year is used for calculation of emissions, "maintenance emissions" related to turnarounds are assumed to be included with the calculated emissions. The usual practice is to deinventory liquids and then vent vessels to the Waste Gas Scrubber.
- All emission determination calculations are available on the EXCEL spreadsheet found at: P:/Emissions/VE-S Emissions

Air Emissions Inventory

Point Source Emissions Determination

A. Carbonyl Fluoride (COF₂)

CAS No. 353-50-4

HF Potential:

Each mole of COF₂ (MW = 66) can generate 2 moles of HF (MW = 20).

$$1 kg COF_2 \cdot \frac{1 moleCOF_2}{66 g COF_2} \cdot \frac{20 g HF}{1 moleHF} \cdot \frac{2 molesHF}{1 moleCOF_2} = 0.606 kg HF$$

Therefore, each kg of COF₂ generates

0.606 kg HF

Quantity Generated

 COF_2 is vented from the PAF column and condensation process. Because amount vented depends on the product split, the composition exit the PAF column is calculated using the following relationship from the flowsheet, which relates COF_2 in feed to condensation to the overall amount of PMVE produced:

kg COF ₂ in Condensation feed	=	0.555
kg PMVE produced	Х	275,769 kg PMVE produced
		153,061 kg COF ₂ fed to condensation

 COF_2 vented from PAF column is determined from a material balance on the column: COF_2 vented from PAF column = COF_2 fed to PAF column - COF_2 fed to condensation

COF ₂ fed to PAF column	=	61.85 kg/	h average pre	ecursor feed,	(1066FC)
	х	5992 hou	urs of operatio	on (from uptir	ne data)
	X	55%_ typ	ical COF ₂ in p	recursor fee	d to PAF column
		203,833 kg	COF ₂ fed to F	PAF column	
COF ₂ vented from PAF column =	203,833	-	153,061	=	50,772 kg
${\sf COF}_2$ vented from condensation (primarily the reactor a relationship from the flowsheet:	or vent) will also	o vary with product split, a	and is therefor	re estimated	using
kg COF ₂ vented	=	0.059			
kg PMVE produced	x	275,769 kg	PMVE produc	ced	
COF ₂ vented from o	condensation =	16,315			
Total COF ₂ vented from process vents to WGS =	50,772	+	16,315	=	67,086 kg

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS)

124 lb HF

Air Emissions Inventory

B. Perfluoroacetyl Fluoride (PAF)

CAS No. 354-34-7

HF Potential:

Each mole of PAF (MW = 116) can generate 1 mole of HF (MW = 20).

$$1 kg PAF \cdot \frac{1 mole PAF}{116 g PAF} \cdot \frac{20 g HF}{1 mole HF} \cdot \frac{1 mole HF}{1 mole PAF} = 0.172 kg HF$$

Therefore, each kg of PAF generates

0.172 kg HF

Quantity Generated

PAF is vented from the PAF column and condensation process. Because amount vented depends on the product split, the composition exit the PAF column is calculated using the following relationship from the flowsheet, which relates PAF in feed to condensation to the overall amount of PEVE produced:

kg PAF in Condensation feed	=	0.716
kg PEVE produced	x	120,978 kg PEVE produced
		86,580 kg PAF fed to condensation

PAF vented from PAF column is determined from a material balance on the column: PAF vented from PAF column = PAF fed to PAF column - PAF fed to condensation

FAI Vented Hom FAI Coldina - FAI led to FAI Co	Julian - 1741 TCG	to condendation			
PAF fed to PAF column	=	61	.85 kg/h average pr	ecursor	feed, (1066FC)
	х	59	992 hours of operati	on (from	uptime data)
	х	4	4% typical PAF in p	recursor	feed to PAF column
		163,0	166 kg PAF fed to P	AF colu	mn
PAF vented from PAF column =	163,066	-	86,580		= 76,486 kg
PAF vented from condensation (primarily the react a relationship from the flowsheet:	or vent) will also	vary with product	split, and is therefor	e estima	ited using
kg PAF vented	· =	0.0	044		
kg PEVE produced	х	120,9	978 kg PEVE produ	ced	
PAF vented from	n condensation =	= 5,3	323		
Total PAF vented from process vents to WGS =	76,486	+	5,323	=	81,809 kg
After-control emissions utilizing the 99.6% control	efficient Waste (Gas Scrubber (WG	iS)		
VOC emissions		kg PAF			=
x =	(100% - 99,6%) 327	kg PAF	=		327 kg VOC 720 lb VOC
HF Equivalent Emissions	32	7 kg PAF			

0.172 kg HF/kg PAF

C. Perfluoromethoxypropionyl fluoride (PMPF)

CAS No. 2927-83-5

HF Potential

Each mole of PMPF (MW = 232) can generate 1 mole of HF (MW = 20). $1 kgPMPF \frac{1 molePMPF}{232gPMPF1 moleHF} \cdot \frac{1 moleHF}{1 molePMPF} = 0.086kgHF$

Therefore, each kg of PMPF generates

0.086 kg HF

Quantity Generated

PMPF is emitted from the Agitated Bed Reactor system. Because amount vented depends on the product split, the composition of the waste gas is estimated using the following relationship from the flowsheet, which relates PMPF in the vent stream to the overall amount of PMVE produced:

 kg PMPF vented
 =
 0.21

 kg PMVE produced
 X
 275,769
 kg PMVE produced

 PMPF vented from ABR system =
 56,893 kg

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS)

VOC emissions 56,893 kg PMPF x (100% - 99.6%)

= 228 kg PMPF

= 228 kg VOC 501 lb VOC

43 lb HF

 HF Equivalent Emissions
 228 kg PMPF

 x
 0.086 kg HF/kg PMPF

x <u>0.086</u> kg HF/kg PMPF = 20 kg HF

D. Perfluoroethoxypropionyl fluoride (PEPF)

CAS No. 1682-78-6

HF Potential:

Each mole of PEPF (MW = 282) can generate 1 mole of HF (MW = 20).

$$1kgPEPF \frac{1molePEPF}{282gPEPF} \cdot \frac{20gHF}{1moleHF} \cdot \frac{1moleHF}{1molePEPF} = 0.071kgHF$$

Therefore, each kg of PEPF generates

0.071 kg HF

Quantity Generated

PEPF is emitted from the Agitated Bed Reactor system. Because amount vented depends on the product split, the composition of the waste gas is estimated using the following relationship from the flowsheet, which relates PEPF in the vent stream to the overall amount of PEVE produced:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS)

E. Perfluoromethyl vinyl ether (PMVE)

CAS No. 1187-93-5

HF Potential:

PMVE is a VOC without the potential to form HF.

Quantity Released

PMVE is a component in the vent from the Low Boiler Column. Composition of this vent stream is based on the flow sheet.

The low boiler column vented at a rate of 2.940 kg/h vent rate, (1830FG)

X 5,992 hours of operation (from uptime data)

17,616 kg vented from low boiler column

PMVE in the low boiler column vent stream = 49% X 17,616 = 8,685 kg

After-control emissions from the Waste Gas Scrubber with an assumed efficiency of zero percent (0%) VOC Emissions = 8,685 kg VOC 19,107 lb VOC

Air Emissions Inventory

F.	Perfluoroethyl vinyl ether (PEVE)	CAS	S No. 10493-43-3						
	HF Potential:								
	PEVE is a VOC without the potential to form HF.								
	Quantity Released								
	There are no point source emissions identified which	contain PEVE.							
		g VOC VOC							
G.	Hexafluoropropylene (HFP)	CA	AS No. 116-15-4						
	HF Potential:								
	HFP is a VOC without the potential to form HF.								
	Quantity Released								
	HFP is an inert in the process that is vented from the PAF column and from the low boiler column.								
	HFP in the LBC vent stream is based on the flow she	eet and estimated to	otal vented.						
	The low boiler column vented at a rate of	2.940 kg/h	n vent rate, (1830F	-G)					
	х _	5,992 hou	rs of operation (fro	om uptime data)					
		17,616 kg v	vented from low bo	oiler column					
	HFP in the low boiler column vent stream =	9%	x	17,616	=	1,533 kg			
	The HFP vented from the PAF column is estimated from	rom a material bala	ince on the PAF o	olumn.	·				
	HFP vented from PAF column = HFP fed to PAF column	umn - HFP left in sy	stem (later remov	ed in LBC)					
	HFP fed to PAF column	=	61.85	kg/h average pred	ursor feed, ((1066FC)			
		x	5992 h	nours of operation	(from uptim	ne data)			
		х	0.5% t	ypical HFP in pre	cursor feed	to PAF column			
			1,853 8	g HFP fed to PA	F column				
	HFP vented from PAF column =	1,853	•	1,533	=	320 kg			
	Afficiency Action in the Mark Co. Combb.		- FG - 1 F						
	After-control emissions from the Waste Gas Scrubbe	r with an assumed	emclency of zero	percent (0%)					
	VOC Emissions 1,533 kg HFP from PA + 320 kg HFP from LB 1,853 kg HFP		1,853 4,077	kg VOC Ib VOC					

Air Emissions Inventory

H. Hexafluoropropylene oxide (HFPO)

CAS No. 428-59-1

HF Potential:

HFPO is a VOC without the potential to form HF.

Quantity Released

HFPO is an inert in the process that is vented from the PAF column. It is assumed that all HFPO fed to the PAF column is vented.

HFPO fed to PAF column

61.85 kg/h average precursor feed, (1066FC)

Х

5992 hours of operation (from uptime data)

Х

0.5% typical HFPO in precursor feed to PAF column

1,853 kg HFPO fed to PAF column

=

1,853 kg HFPO vented from PAF column

After-control emissions from the Waste Gas Scrubber with an assumed efficiency of zero percent (0%)

VOC Emissions

1,853 kg HFPO

1,853 kg V

1,853 kg VOC 4,077 lb VOC

I. VOC Summary - Point Source Emissions

		Before	e Control	After Cont	rol
		VOC G	enerated	Stack Emiss	ions
Nafio	n Compound Name	kg/yr VOC	lb/yr VOC	lb/yr VOC	lb/yr HF
A.	COF2	67,086	147,590		358
B.	PAF	81,809	179,981	720	124
Ċ.	PMPF	56,893	125,165	501	43
D.	PEPF	18,311	40,283	161	11
E.	PMVE	8,685	19,107	19,107	0
F.	PEVE	0	0	0	0
G.	HFP	1,853	4,077	4,077	0
Ĥ.	HFPO	1,853	4,077	4,077	0
	Total	236,490	520,279	29,232	537

J. VOC Summary - All sources

Nafion Compound Name		After Co	ontrol	Equipment Emissions (Note 1)		Tota	1
		Stack Emissions				Emissions	
		lb/yr VOC	lb/yr HF	lb/yr VOC	lb/yr HF	lb/yr VOC	lb/yr HF
A.	COF2	590	358	54	33	644	390
B.	PAF	720	124	53	9	772	133
C.	PMPF	501	43	589	50	1090	93
D.	PEPF	161	11	246	17	407	28
E.	PMVE	19,107	0	1375	0	20482	0
F.	PEVE	0	0	1177	0	1177	0
G.	HFP	4,077	0 .	11	0	4087	0
H.	HFPO	4,077	0	348	0	4425	0
	HFPO Dimer			6	0	6	0
	MD			56	3	56	3
	HydroPEVE	-		11	0	11	0
	PPVE			11	0 -	11	0
	AN			1606	0	1606	0
	Total	29,232	537	5,544	112	34,776	648

Note 1 - See section titled "Equipment Emissions" for details

2015 Fugitive Emissions Determination

Fugitive Emissions (FE) are a function of the number of emission points in the plant (valves, flanges, pump seals). For the fugitive emission calculations the inventory shown below is conservative and based on plant and process diagrams.

Note that the division scrubber efficiency is 99.6% for control of acid fluorides.

Fugitive Emissions from Condensation Reactor System

Valve emissions:	322 valves x	0.00039 lb/hr/valve	=	0.126 lb/hr VOC from FE
Flange emissions:	644 flanges x	0.00018 lb/hr/flange	=	0.116 lb/hr VOC from FE
Pump emissions:	6 pump x	0.00115 lb/hr/pump	. =	0.007 lb/hr VOC from FE
Total fugitive emission rate				0.248 lb/hr VOC from FE

Condensation Tower VOC

Component

COF2

PAF

HFP

PMPF

PEPF

Dimer

MD

ΑN

Mass fraction lb

0.09

0.04

0.03

0.59

0.23

0.01

0.01

28

13

185

72

3

3

Hydrocarbon

188

9

Total Condensation Fugitive Emissions:

0.248 lb/hr FE 5992 Operating hr/yr 1488 lb FE

Composition of Condens	sation Tower Fugitive	e Emissions is es	stimated based on typical process inventory:
PAF column:			
Inventoried with	30 ga	fluorocarbon	
Equivalent mass FC	375.75 lb:	luorocarbon	
Component	Mass fraction lb		
COF2	0.45	169	
PAF	0.54	203	
HFP	0.005	2	
HFPO	0.005	2	
			•
Reactor loop			
Inventoried with	•	hydrocarbon	assumes 60 gallons, 85% hydrocarbon, 15% fluorocarbon
Equivalent mass HC		nydrocarbon	
Inventoried with		fluorocarbon	
Equivalent mass FC	112.725 lb t	luorocarbon	
Component	Mass fraction lb		
CORPOREIN COF2	0.09	10	
PAF	0.09		
HFP	0.04	5 3	
PMPF	0.59		
PEPF		67 26	
	0.23	26	
Dimer	0.01	1	
MD	0.01	1	I boules and an
AN		383	Hydrocarbon
Reactor decanter		-	
Inventoried with	25 gal	hydrocarbon	assumes 50 gal, 50% HC, 50% FC
Equivalent mass HC	•	ydrocarbon	accuming to Bull actually october
Inventoried with		fluorocarbon	
Equivalent mass FC	313.125 lb f		
Equivalent mass i O	010.120 101		

Stripper column Inventoried with Equivalent mass FC	30 gal fluorocarbon 375.75 lb fluorocarbon
Component COF2 PAF HFP PMPF PEPF Dimer MD	Mass fraction lb 0.09
AF column Inventoried with Equivalent mass FC	all FC (70% PMPF, 27% PEPF, 1.5% dimer, 1.5% MD) 30 gal fluorocarbon 375.75 lb fluorocarbon
Component PMPF PEPF Dimer MD	Mass fraction lb 0.7 263 0.27 101 0.015 6 0.015 6
AF overhead Inventoried with	1000 kg FC 2200 lb FC
Component PMPF PEPF	Mass fraction lb 0.72 1,584 0.28 616
AF decanter Inventoried with Equivalent mass FC	30 gal fluorocarbon 375.75 lb fluorocarbon
Component PMPF PEPF	Mass fraction lb 0.72 271 0.28 105
HFPO tank	135 gal HFPO 1555.605 lb HFPO
Waste FC tank Inventoried with Equivalent mass FC	40 gal fluorocarbon 501 30% refining waste (?), 70% is condensation waste (4% dimer, 67% MD, 29% ED)
Component Dimer MD ED	Mass fraction lb 0.028 14.028 assumes 70% is condensation waste (4% dimer, 67% MD, 29% ED) 0.469 234.969 0.203 101.703
Hydro PEVE PPVE PEPF	 0.099 49.599 0.099 49.599 0.099 49.599 assumes 30% is waste from refining purges, high boilers PEPF, hydro PEVE, and PPVE

Average system composition - Condensation

			VOC	
			emissions	Equivalent
	lb	%	(lb)	HF (lb)
COF2	241	3.63%	54	33
PAF	235	3.53%	53	9
HFP	26	0.39%	6	0
HFPO	1,557	23.41%	348	0
PMPF	2,591	38.94%	580	50
PEPF	1,057	15.88%	236	17
Dimer	28	0.42%	6	0.4
MD	249	3.74%	56	3
AN	571	8.58%	128	Ō
HydroPEVE	50	0.75%	11	0
PPVE	50	0.75%	11	0
total	6,653		1488	112

Fugitive Emissions from Agitated Bed Reactor System & Refining

Valve emissions:	555 valves x	0.00039 lb/hr/valve	=	0.216 lb/hr FE
Flange emissions:	1110 flanges x	0.00018 lb/hr/flange	=	0.200 lb/hr FE
Pump emissions:	12 pump x	0.00115 lb/hr/pump	=	0.014 lb/hr FE
Total fugitive emission rate			=	0.430 lb/br FF

ABR & Refining VOC

Total ABR & Refining Fugitive Emissions:

0.43 lb/hr FE 5,992 Operating hr/yr Х

2,577 lb FE

ABR/Crude system

1500 kg FC Inventoried with 3300 lb FC

Component	Mass fraction	lb	
CO2	0.33	1,089	Not a VOC
PMPF	0.01	33	
PEPF .	0.01	33	
HFP	0.005	17	
PEVE	0.22	726	
PMVE	0.425	1,403	

<u>Refining</u>

Inventoried with 3000 kg FC 6600 lb FC

Component Mass fraction lb **PMVE** 0.5 3300 PEVE 3300 0.5

Average System Composition - ABR/Refining

	lb	% .	VOC emissions (lb)	Equivalent HF (lb)
PMPF	33	0.37%	10	1
PEPF	33	0.37%	10	1
HFP	17	0.19%	5	0
PEVE	4,026	45.69%	1177	0
PMVE	4,703	53.37%	1375	0
total	8,811		2,577	2

C. Acetonitrile fugitive emissions

No normal process vents of AN to stack. Equipment emissions are estimated above for normal process composition and

A material balance is also done to ensure all AN losses are accounted for. When material balance shows negative loss, only the estimated equipment emissions are included.

VOC Emission

AN to hydrocarbon waste from VE-S =

13,440

Assume that:

5% of spent acetonitrile are fluorocarbons.

AN portion of hydrocarbon waste stream:

672 kg AN lost

672 kg VOC 1,478 lb VOC additional AN loss

Note: Based on this material balance, it is assumed that no AN is emitted to atmosphere from fugitive emissions, other than what is determined above.

The amount of hydrocarbon sent to waste is probably overestimated due to inaccuracies in calculation of VE-N portion of the waste.

D. **Total Fugitive Emissions**

Emission Source	Total Emissions Ib VOC
Condensation Tower	1,361
Agitated Bed Reactor & Refining	2,577
AN	1,606
Total	5,544

Speciated Equipment Emissions Summary E.

Nafion®		
Compound	Equipmen	t Emissions
	lb VOC	lb HF
COF2	54	33
PAF	53	9
HFP	11	0
HFPO	348	0
PMPF	589	50
PEPF	246	17
HFPO Dimer	6	0.4
MD	56	3
HydroPEVE	11	0
PPVE	11	0
PEVE	1,177	0
PMVE	1,375	0
AN	1,606	0
TOTAL	5,544	112

RSU Process NS-D

2015 Air Emissions Inventory Supporting Documentation

Emission Source ID No.: NS-D

Emission Source Description: Nafion RSU Process

Process and Emission Description:

The RSU process is a continuous manufacturing process. All emissions from this process vent to the Nafion Division Waste Gas Scrubber (WGS), Control Device ID No. NCD-Hdr1, which has a documented efficiency of 99.6%. The control of emissions of certain compounds will be addressed in the attached spreadsheet. Certain components (i.e. TFE) pass completely through the scrubber, therefore the efficiency is assumed to be 0%.

Basis and Assumptions:

The RSU process flowsheet #4 (W1207831) is used as a basis for relative compositions and flow rates of vent streams to the division WGS. A 30 kg/hr maximum RSU production rate is used as the basis for maximum vent rates.

Information Inputs and Source of Inputs:

Information Input	Source of Inputs
RSU production quantity	RSU Production Facilitator
Speciated emission rates	RSU Process Flowsheet #4 (W1207831)

Point Source Emissions Determination:

Point source emissions for individual components are given in the following pages. A detailed explanation of the calculations are attached.

Equipment Emissions and Fugitive Emissions Determination:

Emissions from equipment leaks which vent as stack (point source) emissions and true fugitive (non-point source) emissions have been determined using equipment component emission factors established by DuPont. The determination of those emissions are shown in a separate section of this supporting documentation. Per PHA 07-12 Rec# 3, a Scrubber was installed in the RSU process that would scrub any RV release from equipment inside the tower and also any leak that occured inside the RSU tower. Therefore, any equipment emissions from equipment inside the RSU tower will be scrubbed. However since the efficiency of the Scrubber has not been documented and the fact that the equipment emissions are extremely small for the RSU process, we have elected not to take credit for the Scrubber in regards to equipment emissions.

2015 Emission Summary - RSU Process (NS-D)

A. VOC Emissions by Compound and Source

Nafion®			Point	Fugitive	Equipment	Accidental	Total VOC
Compound	CAS Chemical Name	CAS No.	Source	Emissions	Emissions	Emissions	Emissions
•			Emissions	(lbs)	(sql)	(sql)	(sql)
TFE	Tetrafluoroethylene	116-14-3	3500.0	0	240.8	0	3740.8
PAF	Trifluoroacetyl Fluoride	354-34-7	9.7	0	0.7	0	10.3
RSU	Difluoro(Fluorosulfonyl)Acetyl Fluoride	8-29-229	3.3	0	0.2	0.0	3.5
SU	2-Hydroxytetrafluoroethane Sulfonic Acid Sultone	2-81-269	6.7	0	0.7	0	10.3
EDC	1,2-Dichloroethane	107-06-2	0	16.2	0	0	16.2
į	Total for 2015		3522.6	16.2	242.4	0.0	3781.2
]	

B. Toxic Air Pollutant Summary

Nafion®	CAS Chemical Name	CAS No.	Point Source	Fugitive Emissions	Equipment Emissions	Accidental Emissions	Total TAP Emissions
minodillo			Emissions	(Ips)	(lbs)	(sql)	(sql)
生	Hydrogen Fluoride	7664-39-3	3.10	0	31.5	0.0	31.51
H2S04	Sulfuric Acid	7664-93-9	13.4	138.9	0	0	152.3

C. Criteria Air Pollutant Summary

Nafion®			Point	Fugitive	Equipment	Accidental	Total VOC
Compound	CAS Chemical Name	CAS No.	Source	Emissions	Emissions	Emissions	Emissions
nunodino.		-	Emissions	(Ips)	(lbs)	(sql)	(lbs)
S02	Sulfur dioxide	7446-09-5	5.3	0	0	0	5.3

Point Source Emission Determination

A. Tetrafluoroethylene (TFE)

CAS No. 116-14-3

HF Potential:

TFE is a VOC without the potential to form HF.

TFE Quantity Generated:

Before-control TFE generation per the Process Flowsheet #4 (W1207831):

Source	TFE Vent Rate
Reactor	0.05171 kg TFE vented per RSU unit
Rearranger	0.19559 kg TFE vented per RSU unit
Still	0.02206 kg TFE vented per RSU unit
Total	0.26936 kg TFE vented per RSU unit

The before-control TFE generation is based on 5,893.8 RSU units in 2015

TFE vented from the RSU Process in the reporting year:

After-control emissions utilizing the 0% control efficient Waste Gas Scrubber (WGS):

B. Perfluoroacetyl Fluoride (PAF)

CAS No. 354-34-7

HF Potential:

Each mole of PAF (MW = 116) can generate 1 mole of HF (MW = 20).

$$1 \text{ kg PAF} \times \frac{1 \text{ mole PAF}}{116 \text{ g PAF}} \times \frac{20 \text{ g HF}}{1 \text{ mole HF}} \times \frac{1 \text{ mole HF}}{1 \text{ mole PAF}} = 0.172 \text{ kg HF}$$

Therefore, each 1 kg of PAF generates 0.172 kg of HF

PAF Quantity Generated:

Before-control PAF generation per the Process Flowsheet #4 (W1207831):

Source	PAF Vent Rate
Reactor	0 kg PAF vented per RSU unit
Rearranger	0.16755 kg PAF vented per RSU unit
Still	0.01862 kg PAF vented per RSU unit
Total	0.186 kg PAF vented per RSU unit

The before-control PAF generation is based on 5,893.8 RSU units in 2015

PAF vented from the RSU Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

C. Rearranged Sultone (RSU) Difluoro(Fluorosulfonyl) Acetyl Fluoride

CAS No. 677-67-8

HF Potential:

Each mole of RSU (MW = 180) can generate 1 moles of HF (MW = 20).

$$1 \text{ kg RSU} \times \frac{1 \text{ mole RSU}}{180 \text{ g RSU}} \times \frac{20 \text{ g HF}}{1 \text{ mole HF}} \times \frac{1 \text{ mole HF}}{1 \text{ mole RSU}} = 0.111 \text{ kg HF}$$

Therefore, each 1 kg of RSU generates 0.111 kg of HF

RSU Quantity Generated:

Before-control RSU generation per the Process Flowsheet #4 (W1207831):

Source	RSU Vent Rate	
Reactor	0 kg RSU vented per RSU unit	
Rearranger	0.05677 kg RSU vented per RSU unit	
Still	0.00644 kg RSU vented per RSU unit	
Total	0.063 kg RSU vented per RSU unit	

The before-control RSU generation is based on 5,893.8 RSU units in 2015

RSU vented from the RSU Process in the reporting year:

$$\frac{0.063 \text{ kg RSU}}{\text{RSU unit}} \quad \text{x} \qquad 5,893.8 \quad \text{RSU units} \quad = \quad 373 \quad \text{kg RSU}$$

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

D. Sultone (SU)

CAS No. 697-18-7

TFE Sultone (2-Hydroxytetrafluoroethane Sulfonic Acid)

HF Potential:

Each mole of SU (MW = 180) can generate 1 mole of HF (MW = 20).

$$1 \text{ kg SU} \times \frac{1 \text{ mole SU}}{180 \text{ g SU}} \times \frac{20 \text{ g HF}}{1 \text{ mole HF}} \times \frac{1 \text{ mole HF}}{1 \text{ mole SU}} = 0.111 \text{ kg HF}$$

Therefore, each 1 kg of SU generates 0.111 kg of HF

SU Quantity Generated:

Before-control SU generation per the Process Flowsheet #4 (W1207831):

Source	SU Vent Rate
Reactor	0 kg SU vented per RSU unit
Rearranger	0.16755 kg SU vented per RSU unit
Still	0.01862 kg SU vented per RSU unit
Total	0.186 kg SU vented per RSU unit

The before-control SU generation is based on 5,893.8 RSU units in 2015

SU vented from the RSU Process in the reporting year:

1.07

lb. HF

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

E. Sulfur dioxide (SO2)

CAS No. 354-34-7

Air Pollutant Description:

Sulfur dioxide is a criteria pollutant and will be reported as such on the NC DAQ forms.

SO2 Quantity Generated:

Before-control SO2 generation per the Process Flowsheet #4 (W1207831):

Source	SO2 Vent Rate
Reactor	0 kg SO2 vented per RSU unit
Rearranger	0.09124 kg SO2 vented per RSU unit
Still	0.00988 kg SO2 vented per RSU unit
Total	0.101 kg SO2 vented per RSU unit

The before-control SO2 generation is based on 5,893.8 RSU units in 2015

SO2 vented from the RSU Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

F. Sulfur trioxide (SO3)

CAS No. 7446-11-9

H2SO4 Potential:

Each mole of SO3 (MW = 80) can generate 1 mole of H2SO4 (MW = 98).

$$1 \text{ kg SO}_{3} \times \frac{1 \text{ mole SO}_{3}}{80 \text{ g SO}_{3}} \times \frac{98 \text{ g H}_{2} \text{SO}_{4}}{1 \text{ mole H}_{2} \text{SO}_{4}} \times \frac{1 \text{ mole H}_{2} \text{SO}_{4}}{1 \text{ mole SO}_{3}} = 1.225 \text{ kg H}_{2} \text{SO}_{4}$$

Therefore, each 1 kg of SO3 generates

1.225 kg of H2SO4

SO3 Quantity Generated:

Before-control SO3 generation per the Process Flowsheet #4 (W1207831):

Source	SO3 Vent Rate	
Reactor	0.00115 kg SO3 vented per RSU unit	
Rearranger	0.188 kg SO3 vented per RSU unit	,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Still	0.02114 kg SO3 vented per RSU unit	
Total	0.211 kg SO3 vented per RSU unit	

The before-control SO3 generation is based on

5,893.8 RSU units in 2015

SO3 vented from the RSU Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

SO3 Emissions 1,242 kg SO3
Waste Gas Scrubber
$$x (100\%-99.6\%)$$
 control efficiency $= 4.97 \text{ kg SO3} = 11.0 \text{ lb. SO3}$

13.4 lb. H2SO4

Fugitive and Equipment Emissions Determination (Non-point Source):

Fugitive (FE) and Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). The inventory shown below is conservative and based on plant and process diagrams. Note that the calculations below include equipment emissions inside as well as equipment emissions outside (fugitive emissions).

A. Equipment emissions from SU Reactor, Rearranger, RSU Still and RSU Hold Tank:

Emissions are vented from equipment located inside the RSU barricade and are vented to a vent stack.

Barricade:

Valve emissions: 250 valves x 0.00036 lb/hr/valve = 0.090 lb/hr EE
Flange emissions: 550 flanges x 0.00018 lb/hr/flang = 0.045 lb/hr EE
Total equipment emission rate = 0.135 lb/hr EE

Days of operation = 75

On average 0.13 lbs of HF are produced for every 1 lb of RSU, SU or PAF.

 VOC:
 0.135 lb/hr EE
 HF:
 0.135 lb/hr EE

 X
 24 hours/day
 X
 24 hours/day

 X
 75 days/year
 X
 75 days/year

 Z
 242.4 lb/yr VOC from EE
 X
 0.13 lb HF per lb VOC

 B
 31.5 lb/yr HF from EE

B. Fugitive Emissions From SO3 Storage Tank and Vaporizer

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions:85 valves x 0.00036 lb/hr/valve=0.031 lb/hr FEFlange emissions:180 flanges x 0.00018 lb/hr/flang=0.032 lb/hr FETotal fugitive emission rate=0.063 lb/hr FE

SO3: 0.063 lb. FE/hr
x 24 hours/day
x 75 days/year
= 113.4 lb/yr SO3 from EE

H2SO4: 0.063 lb. FE/hr
x 24 hours/day
x 75 days/year
x 75 days/year
x 1.225 lb H2SO4 per lb SO3
= 138.9 lb/yr H2SO4 from FE

C. Fugitive Emissions From EDC Tank

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions:	20 valves x 0.00036 lb/hr/valve	=	0.007 lb/hr FE
Flange emissions:	10 flanges x 0.00018 lb/hr/flange	=	0.002 lb/hr FE
Total fugitive emissi	ion rate	= -	0.009 lb/hr FE

= 16.2 lb/yr VOC from FE

D. Total RSU Plant Non-Point Source Emissions

	Equipment Emissions		Fugitive Emissions		,
Emission Source	VOC lb/yr	HF lb/yr	VOC lb/yr	SO3 lb/yr	H2SO4 lb/yr
A. Equipment Emissions from SU Reactor, Rearranger, Still and Hold Tank	242.4	31.5	0	0	0
B. Fugitive Emissions From SO3 Storage Tank and Vaporizer	0	0	0	113.4	138.9
C. Fugitive Emissions From EDC Tank	0	0	16.2	0	0
Total for 2015	242.4	31.5	16.2	113.4	138.9

E. VOC Emission by Source Type

Nafion® Compound	Emissions from Stack (lb)	Equipment Emissions (lb)	Fugitive Emissions (lb)	Accidental Releases (Ib)	Total Emissions (lb)
TFE	3500.0	240.8	0	0	3740.8
PAF	9.7	0.7	0 .	0	10.3
RSU	3.3	0.2	0	0.0	3.5
SU	9.7	0.7	0	0	10.3
EDC	0	0	16.2	0	. 16.2
Total	3522.6	242.4	16.2	0.0	3781.2

Note: Speciated equipment emissions were estimated by assuming that each compound's equipment emission concentration was equal to that compound's stack emission fraction of the total stack emission.

Example: The TFE equipment emissions were determined by the ratio of the TFE stack emission (1,997.9 lb) divided by the total stack emission (2,010.8 lb), multiplied by the total equipment emissions (229.4 lb).

Specifically: $\frac{3500.0}{3522.6} = 240.8$ lb. TFE

Liquid Waste Stabilization NS-E

(15/5)

2015

Emission Source ID No.:

NS-E

Emission Source Description:

Nafion Liquid Waste Stabilization

Process & Emission Description:

The Nafion liquid waste stabilization is a continuous system of storage with batch neutralization. To comply with the regulatory requirements of RCRA SubPart CC, neither the storage tank nor the reactor vent during normal operating conditions. All venting from this system occurs as a non-routine maintenance activity, which is detailed in the following pages. All emissions from this system are vented through the Nafion Division Waste Gas Scrubber (Control Device ID No. NCD-Hdr1) which has a documented control efficiency of 99.6% for acid fluoride compounds. The control of emissions of specific compounds will be addressed and detailed in the following pages.

The Nafion liquid waste stabilization process emits compounds in the acid fluoride family. In the presence of water, these acid fluorides will eventually hydrolyse to hydrogen fluoride. For the purpose of this emissions inventory, a conservative approach will be take and the acid fluorides will be reported both as a VOC and as the equivalent quantity of hydrogen fluoride.

Basis and Assumptions:

- For the HF emissions the entire gas flow is assumed to be HF
- The VOC emissions are assumed to be 30% COF2 and 70% TAF for the Reactor
- The VOC emissions are calculated based on Trimer and RSU for the Storage Tank
- The ideal gas law is used.

Information Inputs and Source Inputs:

Information Input	Source of Inputs			
Weight of Tank	IP21 (W03450WG and W03606WG)			
Category and Reason for Emission	Waste Mechanical Facilitator			

Point Source Emissions Determination:

Shown on the following pages

Fugitive Emissions Determination:

Shown on the following pages.

Stack Emissions from Maintenance Activity or Emergency Activity for the Reactor

Background

Before performing maintenance on the reactor or storage tank, the pressure from the system is vented to the Division WGS. Each vent is recorded in IP21 by the weight before and after the vent. There can be times when the pressure in either the reactor or storage tank rises rapidly due to reaction. During these times if the pressure rises above 700 kpa in either tank, a pressure control valve can be opened to vent the tank to avoid the relief valve opening. See chart below.

				Tank Weight	
Date	Tank	Category	Reason	Initial	Final
				(kg)	(kg)
6/5/15	Reactor	Maintenance	pump maintenance	411	0
9/19/15	Reactor	Maintenance	Annual Shutdown	74	15

Sample calculation using maintenance activity dated 6/5/15

Initial Weight	minus	s Final Weight equals kg vented		kg vented to Division WGS
411 kg	minus	0 kg	equals	411 kg vented to WGS

Assume that all of the above is VOC emissions This assumption also overstates the true emissions as inerts, such as nitrogen are not counted.

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

Percentage of acid fluoride VOCs removed by the WGS = 99.6%

Percentage of acid fluoride VOCs vented from the WGS = 100% minus 99.6%

Percentage of acid fluoride VOCs vented from the WGS = 0.4%

Therefore, VOCs vented to the atmosphere from the 6/5/15 maintenance activity is equal to:

Amount of VOCs vented to WGS: 411 kg of VOC Percentage of VOCs vented from the WGS: x = 0.4%Quantity of VOCs vented from the WGS: = 1.644 kg VOC = 3.62436 lb VOC

Stack Emissions from Maintenance Activity (cont.) for the Reactor VOC Emissions by Compound

Assume that the vapor is 30% COF2 and 70% TAF. This assumption is based on process knowledge of the system.

Quantity of VOCs vented from the WGS (see previous page) = 3.6244 lb VOC

COF2 (carbonyl fluoride)

CAS No. 353-50-4

Sample calculation using maintenance activity dated 6/5/15

VOC emissions would be equal to:

TAF (telomeric acid fluoride) (perfluoro-3,5,7, 9,11-pentaoxadodecanoyl fluoride)

CAS No. 690-43-7

Sample calculation using maintenance activity dated 6/5/15

VOC emissions would be equal to:

Stack Emissions from Maintenance Activity (cont.) for the Reactor HF Potential

Assume that the vapor is 30% COF2 and 70% TAF. This assumption is based on process knowledge of the system.

COF2 (carbonyl fluoride)

CAS No. 353-50-4

Each mole of COF2 (MW = 66) can generate 2 moles of HF (MW = 20)

Therefore, each 1 lb of COF2 generates 0.606 lb of HF

TAF (telomeric acid fluoride) (perfluoro-3,5,7, 9,11-pentaoxadodecanoyl fluoride)

CAS No. 690-43-7

Each mole of TAF (MW = 330) can generate 1 mole of HF (MW = 20)

Therefore, each 1 lb of TAF generates 0.061 lb of HF

Sample calculation using maintenance activity dated 6/5/15

Quantity of VOCs vented from the WGS (see Page 2) = 3.6244 lb VOC

HF equivalent emissions would be equal to:

3.624 lb VOC	0.30 lb COF2	0.606 lb HF	= 0.659 lb HF
	lb VOC	lb COF2	_
	1		
3.624 lb VOC	0.70 lb TAF	0.061 lb HF	= 0.1538 lb HF
-	lb VOC	lb TAF	_

Therefore, HF vented to the atmosphere from the 6/5/15 maintenance activity is equal to:

$$0.659 \text{ lb HF} + 0.1538 \text{ lb HF} = 0.8127 \text{ lb HF}$$

Stack Emissions from Maintenance Activity (cont.) for the Reactor Calculation page

				Weight of Tank		Emitted	Emitted
Date	Tank	Category	Reason	Initial (kg)	Final (kg)	VOC (lb)	HF (lb)
6/5/15	Reactor	Maintenance	pump maintenanc	411	0	3.624	0.813
9/19/15	Reactor	Maintenance	Annual Shutdown	74	15	0.520	0.117
				•			

Total Emissions	4.14	0.93

Total	VOC :	= 4.14	lb	
	VOC =	0.0021	ton	STACK EMISSIONS
Total	HF =	0.93	lb	STACK EMISSIONS

Speciated VOC Stack Emissions

The VOC emissions from the Waste Liquid Stabilization process is assumed to be comprised of 30% by weight of COF2 and 70% by weight of TAF. The emission of these compounds from each of the following events is determined simply by multiplying the total emitted VOC by 30% to determine the COF2 emission and 70% to determine the TAF emission.

				Emitted	Emitted	Emitted
Date	Tank	Category	Reason	VOC (lb)	COF2 (lb)	TAF (lb)
6/5/15	Reactor	Maintenance	pump maintenance	3.624	1.087	2.537
9/19/15	Reactor	Maintenance	Annual Shutdown	0.520	0.156	0.364
				-		

Total Emissions	4.14	1.24	2.90

Fugitive Emissions Leak Rates for Process Equipment for the Reactor

Using the following table, the Fugitive Emissions Rates will be calculated:

		Emission Factors
Component	Service	(lb/hr/component)
Pump Seals	Light Liquid	0.00115
Valves	Light Liquid	0.00036
Flanges	All	0.00018

VOC Fugitive Emissions from Equipment Components

1	Pump Seals	X	0.00115	lb/hr/pumpseal	=	0.00115	lb/hr VOC
96	Valves	X	0.00036	lb/hr/valve	=	0.0346	lb/hr VOC
55	Flanges	X	0.00018	lb/hr/flange	=	0.0099	lb/hr VOC
	Total VOC I	Emis	sions fron	Equipment Leaks	= -	0.0456	lb/hr VOC

Total Annual Fugitive VOC Emissions:

Speciated Fugitive VOC Emissions by Compound:

Assume that the emissions are 30% COF2 and 70% TAF. This assumption is based on process knowledge of the system.

See Page 3 for HF equivalents calculation:

Stack Emissions from Maintenance Activity or Emergency Activity for the Storage Tank

Background

Before performing maintenance on the reactor or storage tank, the pressure from the system is vented to the Division WGS. Each vent is recorded in IP21 by the weight before and after the vent. There can be times when the pressure in either the reactor or storage tank rises rapidly due to reaction. During these times if the pressure rises above 700 kpa in either tank, a pressure control valve can be opened to vent the tank to avoid the relief valve opening. See chart below.

				Tank Weight	
Date	Tank	Category	Reason	Initial (kg)	Final (kg)
9/18/15	Storage	Maintenance	Annual Shutdown	231	143
	-				

Sample calculation using maintenance activity dated 9/18/15

Initial Weight	minus	Final Weight	equals	kg vented to Division WGS
231 kg	minus	143 kg	equals	88 kg vented to WGS

Assume that all of the above is VOC emissions This assumption also overstates the true emissions as inerts, such as nitrogen are not counted.

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

Percentage of acid fluoride VOCs removed by the WGS = 99.6%

Percentage of acid fluoride VOCs vented from the WGS = 100% minus 99.6%

Percentage of acid fluoride VOCs vented from the WGS = 0.4%

Therefore, VOCs vented to the atmosphere from the 9/18/15 maintenance activity is equal to:

Amount of VOCs vented to WGS:

Percentage of VOCs vented from the WGS: x

Quantity of VOCs vented from the WGS: = 0.352 kg VOC

= 0.776019 lb VOC

Stack Emissions from Maintenance Activity (cont.) for the Storage Tank

VOC Emissions by Compound

Assume that the vapor is 100% Trimer. This assumption is based on process knowledge of the system.

Quantity of VOCs vented from the WGS (see previous page) =

0.78 lb VOC

HFPO Trimer (perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride)

CAS No. 2641-34-1

Sample calculation using maintenance activity dated 9/18/15

VOC emissions would be equal to:

0.776 lb VOC 1.00 lb Trimer = 0.776 lb HFPO Trimer lb VOC

Stack Emissions from Maintenance Activity (cont.) for the Storage Tank HF Potential

Assume that the vapor is 100% Trimer. This assumption is based on process knowledge of the system.

HFPO Trimer (perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride)

2490 lb HFPO Trimer = 100 lb of HF

1 lb HFPO Trimer = 0.0402 lb of HF

Therefore, each 1 lb of Trimer generates 0.04 lb of HF

Sample calculation using maintenance activity dated 9/18/15

Quantity of VOCs vented from the WGS (see Page 2) = 0.78 lb VOC

HF equivalent emissions would be equal to:

Stack Emissions from Maintenance Activity (cont.) for the Storage Tank Calculation page

				Weight	of Tank	Emitted	Emitted
Date	Tank	Category	Reason	Initial (kg)	Final (kg)	VOC (lb)	HF (lb)
9/18/15	Storage	Maintenance	Annual Shutd	231	143	0.776	0.031

Total Emissions	0.78	0.03

Total
$$VOC = 0.78$$
 lb $VOC = 0.0004$ ton STACK EMISSIONS

Total $\overline{HF} = 0.03$ lb STACK EMISSIONS

Speciated VOC Stack Emissions

The VOC emissions from the Waste Liquid Stabilization Storage Tank is assumed to be comprised of 100% by weight of HFPO Trimer.

				Emitted	Emitted	
Date	Tank	Category	Reason	VOC (lb)	Trimer (lb)	
9/18/15	Storage	Maintenance	nnual Shutdov	0.776	0.776	
			L			

Total Emis	sions	0.78	0.78	0.00

Fugitive Emissions Leak Rates for Process Equipment for the Storage Tank

Using the following table, the Fugitive Emissions Rates will be calculated:

		Emission Factors
Component	Service	(lb/hr/component)
Pump Seals	Light Liquid	0.00115
Valves	Light Liquid	0.00036
Flanges	All	0.00018

VOC Fugitive Emissions from Equipment Components

1	Pump Seals	X	0.00115	lb/hr/pumpseal	=	0.00115	lb/hr VOC
60	Valves	X	0.00036	lb/hr/valve	=	0.0216	lb/hr VOC
35	Flanges	X	0.00018	lb/hr/flange	=	0.0063	lb/hr VOC
	Total VOC E	<u>Emis</u>	ssions from	Equipment Leaks	= _	0.0291	lb/hr VOC

Total Annual Fugitive VOC Emissions:

Speciated Fugitive VOC Emissions by Compound:

Assume that the emissions are 100% Trimer. This assumption is based on process knowledge of the system.

See Page 3 for HF equivalents calculation:

399.5 lb VOC	1.00 lb Trimer	0.040 lb HF	=	16.0	lb HF
-	lb VOC	lb Trimer	-		

Emissions from One Time Release None

Emission Summary

A. VOC Emissions by Compound and Source

Nafion® Compound	CAS Chemical Name	CAS No.	Stack Emissions (lbs)	Fugitive Emissions (lbs)	Total Emissions (lbs)
COF2	Carbonic difluoride	353-50-4	1.24	119.9	121.1
HFPO Trimer	Perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride	2641-34-1	0.78	254.5	255.3
TAF	Trifluoromethyl carbonofluoridate	3299-24-9	2.90	279.7	282.6
· · · · ·				OC (lb) OC (ton)	658.9 0.33

B. Toxic Air Pollutant Summary

Nafion®	CAS Chemical Name	CAS No.	Stack Emissions	Fugitive Emissions	Total Emissions
Compound			(lbs)	(lbs)	(lbs)
HF	Hydrogen fluoride	7664-39-3	16.98	89.6	106.6

MMF Process NS-F MMF Process

Emission Summary

A. VOC Emissions by Compound and Source

	SL									ĺ				 	
Total VOC	Emissions	(sql)	332.9	0.1	0.0	0.0	0.0	0.0	0.0	50.8	23.7		23.8	431.3	0.22
Accidental	Emissions	(sql)	0	0	0	0	0	0	0	0	0	ď	o	0	VOC (Tons)
Equipment	Emissions	(sql)	0	0	0	0	0	0	0	0	6.7	o o	23.8	30.5	
Fugitive	Emissions	(lps)	164.1	0.1	0.01	0.01	0.01	0.001	0.000	25.1	8.4		0.0	197.6	
Point Source	Emissions	(sq _I)	168.7	0.1	0.01	0.01	0.01	00.00	0.00	25.8	8.6		>	203.2	i
		CAS No.	616-38-6	115-10-6	3823-94-7	425-88-7	755-73-7	1422-71-5	93449-21-9	116-14-3	593-53-3	00440 24 0	9-17-01160		
	CAS Chemical Name		Carbonic Acid, Dimethy Ester	Dimethyl ether	Methyl Trifluorovinyl Ether	1-methoxy-1,1,2,2-tetrafluoroethane	Methyl-3-methoxy-	Bis(2-methoxytetrafluoroethyl)ketone	MTP Acid	Tetrafluoroethylene	Methyl Fluoride	Propanoic Acid, 2,2,3-Trifluoro-3-	oxo,methyl ester	Total VOC for 2015	
	Nafion®	Compound	DMC	DME	MTVE	MTFE	MTP	BMTK	MTP Acid	TFE	CH3F		IMINIL		

B. Toxic Air Polluntant Summary

			Point Source	Fugitive	Equipment	Accidental	Total	
Nafion®	CAS Chemical Name		Emissions	Emissions	Emissions	Emissions	Emissions	
Compound		CAS No.	(sql)	(sql)	(sql)	(sql)	(sql)	_
HF	Hydrogen Fluoride	7664-39-3	0	25.7	4	0	29.7	

Point Source Emission Determination

A. TFE

CAS No. 116-14-3

Tetrafluoroethylene

HF Potential:

TFE is a VOC without the potential to form HF.

TFE Quantity Generated:

Before-control TFE emission rate per the Process Flowsheet #5600:

Source		TFE Vent Rate	
MTP Rx	0.0182	kg TFE vented per MMF unit	
Neutralizer	0	kg TFE vented per MMF unit	
Wash Tk	0	kg TFE vented per MMF unit	
Crude MTP Tk	0	kg TFE vented per MMF unit	
Crude DMC Tk	0	kg TFE vented per MMF unit	
DMC Still	0	kg TFE vented per MMF unit	
Total	0.0182	kg TFE vented per MMF unit	

The before-control TFE emission is based or 642.2 MMF units in 2015

TFE vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

Waste Gas Scrubber
$$=$$
 $\begin{array}{c} 11.69 & \text{kg TFE} \\ (100\%-0\%) & \text{control efficiency} \\ = 11.69 & \text{kg TFE} = 25.77 & \text{lb. VOC} \\ \end{array}$

B. DMC

CAS No. 616-38-6

Carbonic acid, dimethyl ester

HF Potential:

DMC is a VOC without the potential to form HF

DMC Quantity Generated:

Before-control DMC emission rate per the Process Flowsheet #5600:

Source		DMC Vent Rate	
MTP Rx	0.0249	kg DMC vented per MMF unit	
Neutralizer	0.0315	kg DMC vented per MMF unit	
Wash Tk	0.0057	kg DMC vented per MMF unit	
Crude MTP Tk	0.0075	kg DMC vented per MMF unit	
Crude DMC Tk	0.0099	kg DMC vented per MMF unit	
DMC Still	0.0396	kg DMC vented per MMF unit	
Total	0.1192	kg DMC vented per MMF unit	

The before-control DMC emission is based on

642.2 MMF units in 2015

DMC vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

C. DME

Dimethyl ether

CAS No. 115-10-6

HF Potential:

DME is a VOC without the potential to form HF

DME Quantity Generated:

Before-control DME emission rate per the Process Flowsheet #5600:

Source		DME Vent Rate	
MTP Rx	0	kg DME vented per MMF unit	
Neutralizer	0.000214	kg DME vented per MMF unit	
Wash Tk	0.000138	kg DME vented per MMF unit	
Crude MTP Tk	0.000221	kg DME vented per MMF unit	
Crude DMC Tk	0	kg DME vented per MMF unit	
DMC Still	0.00860	kg DME vented per MMF unit	
Total	0.00917	kg DME vented per MMF unit	

The before-control RSU emission is based on

642.2 MMF units in 2015

DME vented from the MMF Process in the reporting year:

$$\frac{0.00917 \text{ kg DME}}{\text{MMF unit}} \times 642.2 \quad \text{MMF unit} = 5.89 \quad \text{kg DME}$$

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

Waste Gas Scrubber
$$=$$
 $\frac{5.89 \text{ kg DME}}{(100\%-99.6\%) \text{ control efficiency}}$ $=$ $\frac{0.02 \text{ kg DME}}{0.05 \text{ lb. DME}}$ $=$ 0.05 lb. VOC

D. MTVE

Methyl Trifluorovinyl Ether

CAS No. 3823-94-7

HF Potential:

MTVE is a VOC without the potential to form HF

MTVE Quantity Generated:

Before-control MTVE emission rate per the Process Flowsheet #5600:

Source		MTVE Vent Rate
MTP Rx	0.00057	kg MTVE vented per MMF unit
Neutralizer	0.00049	kg MTVE vented per MMF unit
Wash Tk	0.00019	kg MTVE vented per MMF unit
Crude MTP Tk	0.00042	kg MTVE vented per MMF unit
Crude DMC Tk	0	kg MTVE vented per MMF unit
DMC Still	0	kg MTVE vented per MMF unit
Total	0.00166	kg MTVE vented per MMF unit

The before-control MTVE emission is based on

642.2 MMF units in 2015

MTVE vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

Waste Gas Scrubber
$$=$$
 $\frac{1.0679 \text{ kg MTVE}}{(100\%-99.6\%) \text{ control efficiency}} = \frac{0.009 \text{ lb. MTVE}}{0.009} = \frac{0.009 \text{ lb. MTVE}}{0.009}$

E. MTFE (Methyl tetrafluoroethyl ether) 1-methoxy-1,1,2,2-tetrafluoroethane

CAS No. 425-88-7

HF Potential:

MTFE is a VOC without the potential to form HF.

MTFE Quantity Generated:

Before-control MTFE emission rate per the Process Flowsheet #5600:

Source		MTFE Vent Rate
MTP Rx	0.001269	kg MTFE vented per MMF unit
Neutralizer	0.000489545	kg MTFE vented per MMF unit
Wash Tk	0.00019306	kg MTFE vented per MMF unit
Crude MTP Tk	0.000420595	kg MTFE vented per MMF unit
Crude DMC Tk	0	kg MTFE vented per MMF unit
DMC Still	0	kg MTFE vented per MMF unit
Total	0.00237	kg MTFE vented per MMF unit

The before-control MTFE emission is based on

642.2 MMF units in 2015

MFTE vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

F. MTP

CAS No. 755-73-7

Methyl-3-methoxy-tetrafluoropropionate

HF Potential:

MTP is a VOC without the potential to form HF

MTP Quantity Generated:

Before-control MTP emission rate per the Process Flowsheet #5600:

Source		MTP Vent Rate	
MTP Rx	0.0000028	kg MTP vented per MMF unit	
Neutralizer	0.001041	kg MTP vented per MMF unit	
Wash Tk	0.000365	kg MTP vented per MMF unit	
Crude MTP Tk	0.000503	kg MTP vented per MMF unit	
Crude DMC Tk	0.0000007	kg MTP vented per MMF unit	
DMC Still	0	kg MTP vented per MMF unit	
Total	0.00191	kg MTP vented per MMF unit	

The before-control MTP emission is based on

642.2 MMF units in 2015

MTP vented from the MMF Process in the reporting year:

$$\frac{0.00191 \text{ kg MTP}}{\text{MMF unit}} \qquad \text{x} \qquad 642.2 \qquad \text{MMF unit} \qquad = \qquad \textbf{1.23} \qquad \text{kg MTP}$$

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

MTP Emissions

Waste Gas Scrubber
$$=$$
 $\frac{1.229 \text{ kg MTP}}{(100\%-99.6\%) \text{ control efficiency}} = \frac{0.011 \text{ lb. MTP}}{0.001}$ $= 0.011 \text{ lb. VOC}$

G. BMTK

CAS No. 1422-71-5

Bis(2-methoxytetrafluoroethyl)ketone

HF Potential:

BMTK is a VOC without the potential to from HF.

BMTK Quantity Generated:

Before-control BMTK emission rate per the Process Flowsheet #5600:

Source		BMTK Vent Rate
MTP Rx	0	kg BMTK vented per MMF unit
Neutralizer	0.000089635	kg BMTK vented per MMF unit
Wash Tk	0.000034475	kg BMTK vented per MMF unit
Crude MTP Tk	0.00004137	kg BMTK vented per MMF unit
Crude DMC Tk	0	kg BMTK vented per MMF unit
DMC Still	0	kg BMTK vented per MMF unit
Total	0.00016548	kg BMTK vented per MMF unit

The before-control BMTK emission is based on

642.2 MMF units in 2015

BMTK vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

BMTK Emissions

Waste Gas Scrubber
$$=$$
 0.10627 kg BMTK $=$ 0.00043 kg BMTK $=$ 0.001 lb. BMTK $=$ 0.001 lb. VOC

H. MTP Acid

CAS No. 93449-21-9

HF Potential:

MTP Acid is a VOC without the potential to form HF.

MTP Acid Quantity Generated:

Before-control MTP Acid emission rate per the Process Flowsheet #5600:

Source		MTP Acid Vent Rate	
MTP Rx	0.000000	kg MTP Acid vented per MMF unit	
Neutralizer	0	kg MTP Acid vented per MMF unit	
Wash Tk	0.000020685	kg MTP Acid vented per MMF unit	-
Crude MTP Tk	0.000034475	kg MTP Acid vented per MMF unit	
Crude DMC Tk	0	kg MTP Acid vented per MMF unit	
DMC Still	0	kg MTP Acid vented per MMF unit	
Total	0.00005516	kg MTP Acid vented per MMF unit	

The MTP Acid emission* is based on

642.2 MMF units in 2015

MTP Acid vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

MTP Acid Emissions

Waste Gas Scrubber
$$=$$
 0.035 kg MTP Acid $=$ 0.00014 kg MTP Acid $=$ 0.0003 lb. MTP Acid $=$ 0.0003 lb. VOC

^{*} before-control emissions

I. CH3F

CAS No. 593-53-3

Methyl fluoride

HF Potential:

CH3F is a VOC without the potential to form HF.

CH3F Quantity Generated:

Before-control CH3F emission rate per the Process Flowsheet #9599:

Source		CH3F Vent Rate
MTP Reactor	0	kg CH3F vented per MMF unit
Neutralizer	0	kg CH3F vented per MMF unit
Wash Tk	0	kg CH3F vented per MMF unit
Crude MTP Tk	0	kg CH3F vented per MMF unit
Crude DMC Tk	0	kg CH3F vented per MMF unit
DMC Still	0	kg CH3F vented per MMF unit
MMF Reactor	1.52	kg CH3F vented per MMF unit
Total	1.52	kg CH3F vented per MMF unit

The before-control CH3F emission is based on

642.2 MMF units in 2015

CH3F vented from the MMF Process in the reporting year:

After-control emissions utilizing the 99.6% control efficient Waste Gas Scrubber (WGS):

CH3F Emissions

Waste Gas Scrubber
$$=$$
 $\frac{974.2 \text{ kg CH3F}}{\text{x} (100\%-99.6\%) \text{ control efficiency}}$ $=$ $\frac{3.9 \text{ kg CH3F}}{\text{s} (100\%-99.6\%) \text{ control efficiency}}$ $=$ $\frac{8.6 \text{ lb. CH3F}}{\text{s} (100\%-99.6\%) \text{ lb. VOC}}$

Fugitive and Equipment Emissions Determination (Non-point Source):

Fugitive (FE) and Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). The inventory shown below is conservative and based on plant and process diagrams. Note that the calculations below include the following: (1) equipment emissions not inside buildings, which are "fugitive" in nature and will be reported as such, and (2) equipment emission in side buildings, which are not "fugitive" in nature and will be reported as equipment emissions only.

A. Fugitive emissions from MMF equipment outside of the barricade:

Emissions from this equipment are not inside a building and are therefore "fugitive" in nature.

Valve emissions: 552 valves x 0.00036 lb/hr/valve = 0.199 lb/hr EE
Flange emissions: 100 flanges x 0.00018 lb/hr/flange = 0.018 lb/hr EE
Total equipment emission rate = 0.199 lb/hr EE
0.018 lb/hr EE

Days of operation = 38

On average 0.13 lbs of HF are produced for every 1 pound of process material released

 VOC:
 0.217 lb/hr EE
 HF:
 0.217 lb/hr EE

 x
 24 hours/day
 x
 24 hours/day

 x
 38 days/year
 x
 38 days/year

 =
 197.6 lb/yr VOC from EE
 x
 0.13 lb HF per lb VOC

 =
 25.7 lb/yr HF from EE

B. Equipment Emissions From MMF Reactor and Transfer Tank

This equipment is inside a building, therefore emissions are not true Fugitive Emissions

Valve emissions:88 valves x 0.00036 lb/hr/valve=0.032 lb/hr FEFlange emissions:10 flanges x 0.00018 lb/hr/flange=0.002 lb/hr FETotal fugitive emission rate=0.033 lb/hr FE

VOC: 0.033 lb. FE/hr HF: 0.033 lb. FE/hr. 24 hours/day 24 hours/day Х Х 38 days/year 38 days/year Х Х 30.5 lb/yr VOC from EE 0.13 lb HF per lb VOC Х 4.0 lb/yr HF from EE

C. Total MMF Plant Non-Point Source Emissions

	1	itive sions		oment sions
Emission Source	VOC lb/yr	HF lb/yr	VOC lb/yr	HF lb/yr
A. Fugitive emissions from MMF equipment outside of the barricade:	197.6	25.7	.0	0
B. Equipment Emissions From MMF Reactor and Transfer Tank	0	0	30.5	4.0
Total for 2015	197.6	25.7	30.5	4.0

E. VOC Emission by Source Type

Nafion® Compound	Emissions from Stack (lb)	Fugitive Emissions (Ib)	Equipment Emissions (lb)	Accidental Releases (Ib)	Total Emissions (lb)
DMC	168.7	164.1	0	0	332.9
DME	0.1	0.1	0	. 0	0.1
MTVE	0.01	0.01	0	0	0.02
MTFE	0.01	0.01	0	0	0.03
MTP	0.01	0.01	0	0	0.02
BMTK	0.001	0.001	0	0	0.002
MTP Acid	0.0003	0.000	0	0	0.001
TFE	25.8	25.1	0	0	50.8
CH3F	8.6	8.4	6.7	0	23.7
MMF	0	0	23.8	0	23.8
Total	203.2	197.6	30.5	0.0	431.3

Note: Speciated equipment emissions were estimated by assuming that each compound's equipment emission concentration was equal to that compound's stack emission fraction of the total stack emission.

Example: The DMC equipment emissions were determined by the ratio of the DMC stack emission (254.7 lb) divided by the total stack emission (306.7 lb), multiplied by the total equipment emissions (358.9 lb).

Resins Process NS-G

Yearly Emission Summary

A. VOC Compound Summary

Compound	CAS Chemical Name		CAS No.	Emission (lb)
PSEPVE	Perfluoro(4-methyl-3,6-dioxaoct-7-ene) su fluoride	lfonyl	16090-14-5	1,513
EVE	methyl 2,2,3,3-tetrafluoro-3-({1,1,1,2,3,3-h [(trifluoroethenyl)oxy]propan-2-yl}oxy)prop		63863-43-4	1,372
TFE.	Tetrafluoroethylene		116-14-3	12,153
E-2	2H-Perfluoro(5-Methyl-3,6-Dioxanonane)		3330-14-1	3,492
MeOH	Methanol		67-56-1	149
		Total VOC	Emissions (lb.)	18,679
		Total VOC Emissions (tons)		

B. Toxic Air Pollutant Summary

NS-G SR/CR Resins Manufacturing Process						
Compound	CAS Chemical Name	CAS No.	Emission (lb)			
F-113	Trichloro-1,2,2-trifluoro-1,1,2 Ethane	76-13-1	0			
HF	Hydrogen Fluoride	7664-39-3	0.6			
MeOH	Methanol	67-56-1	149			

Total raw materials fed (M), kgs

	E-2	PSEPVE	Totalized	EVE		Totalized	Totalized	SR	CR	
	Solution	Solution	PSEPVE	Solution	Totalized	TFE Make-	DP	Consumpt	Consumpt	M
	Addition	Addition	Feed	Addition	EVE Feed	up	Addition	ion	ion	(kg)
Jan-15	561	1,944	4,230	0	0	5,717	484	8,559	1,375	22,870
Feb-15	601	764	5,033	0	0	6,197	425	7,640	441	21,101
Mar-15	1,533	1,333	3,499	0	0	4,553	428	4,743	2,233	18,322
Арг-15	4,177	2,101	1,204	0	0	1,556	141	8,319	1,880	19,378
May-15	1,192	1,213	4,006	0	0	4,696	510	7,114	1,268	19,999
Jun-15	280	318	3,480	0	0	3,958	244	6,323	0	14,603
Jul-15	1,796	288	3,439	0	0	3,951	231	6,119	2,843	18,667
Aug-15	276	1,632	5,280	0	0	6,471	393	10,071	442	24,565
Sep-15	1,769	189	1,750	0	0	1,984	120	4,114	0	9,926
Oct-15	5,162	0	0	1,905	2,993	4,611	208	0	450	15,329
Nov-15	2,573	2,556	4,596	0	0	5,559	232	9,005	2,158	26,679
Dec-15	1,488	0	5,792	0	0	7,471	401	9,186	2,678	27,016

Total transformed materials collected (P) , kgs

		N/S	Purge & Adhesion		Vent Port	Р
	Polymer	Polymer	s	Purge	Juice	(kg)
Jan-15	7,445	746	242	452	246	9,132
Feb-15	10,025	48	160	175	0	10,409
Mar-15	6,833	49	0	61	0	6,942
Apr-15	2,095	0	239	401	165	2,900
May-15	7,472	207	86	39	0	7,803
Jun-15	6,251	0	195	418	285	7,148
Jul-15	6,656	0	0	211	0	6,867
Aug-15	10,526	0	302	262	187	11,277
Sep-15	3,063	0	0	257	0	3,320
Oct-15	6,982	0	0	10	0	6,992
Nov-15	8,532	. 0	416	244	35	9,227
Dec-15	11,812	0	0	0	0	11,812

Total untransformed materials collected (W), kgs

				VE to	E2 to	
	SR	CR	Solution	Filters/Sie	Filters/Sie	W
!	Issued	Issued	Increase	ves	ves	(kg)
Jan-15	8,370	1,290	2,881	448	493	13,483
Feb-15	7,594	398	947	877	761	10,577
Mar-15	6,375	2,161	2,077	290	341	11,245
Apr-15	8,100	1,703	3,000	1,710	1,486	15,999
May-15	6,842	1,224	3,321	200	183	11,770
Jun-15	6,091	0	-95	436	376	6,809
Jul-15	6,320	2,751	1,837	85	73	11,067
Aug-15	10,249	420	1,098	752	721	13,240
Sep-15	4,187	0	1,869	175	150	6,381
Oct-15	0	441	6,611	0	0	7,052
Nov-15	7,891	2,065	5,192	378	326	15,853
Dec-15	9,820	2,146	150	411	355	12,882

VOC emissions from the filling of storage tanks (S)

	Total PSEPVE loss from Tank	Total EVE loss from Tank	Total E-2 loss from Tank	Total MeOH Emissions (kg)	S (kg)
Jan-15	0	0	1	22	23
Feb-15	0	0	1	25	27
Mar-15	0	0	_ 1	15	17
Apr-15	0	0	1	7	8
May-15	0	0	1	15	16
Jun-15	0	0	1	19	20
Jul-15	0	0	1	19	20
Aug-15	0	0	1	21	23
Sep-15	0	0	1	8	9
Oct-15	0	0	1	12	14
Nov-15	0	0	1	21	22
Dec-15	0	0	1	21	23

Total VOC Emissions (lb) : $E = (M - P - W + S) \times 2.2$

	M	P	W	S	E	E
	(kg)	(kg)	(kg)	(kg)	(kg)	(lb)
Jan-15	22,870	9,132	13,483	23	278	612
Feb-15	21,101	10,409	10,577	27	141	311
Mar-15	18,322	6,942	11,245	17	152	333
Apr-15	19,378	2,900	15,999	8	487	1,071
May-15	19,999	7,803	11,770	16	443	974
Jun-15	14,603	7,148	6,809	20	667	1,467
Jul-15	18,667	6,867	11,067	20	754	1,658
Aug-15	24,565	11,277	13,240	23	71	156
Sep-15	9,926	3,320	6,381	9	234	515
Oct-15	15,329	6,992	7,052	14	1,299	2,857
_ Nov-15	26,679	9,227	15,853	22	1,621	3,566
Dec-15	27,016	11,812	12,882	23	2,344	5,158
	•		To	tal VOC Em	issions (lb)	18,679
			Tota	I VOC Emis	sions (ton)	9.34

Nafion® Membrane Process NS-H

(05/18)

Emission source/Operating Scenario Data

1. Emission Source ID No.

NS-H

Actual emissions per pollutant listed for source/process identified on page 1:

Criteria (NAAQS) pollutants	Pollutant code	Emissions- Criteria pollutants (tons/yr) 2015	Emission estimation method code	control efficiency
Carbon Monoxide	со	0	2	
NOx	NOx	0	2 -	
TSP	TSP	0	2	
PM 2.5	PM-2.5	0	2	
PM 10	PM-10	0	2	
SO2	SO2	0	2	
voc	voc	14.7	2	0%

-		Emissions-		
		Criteria	estimation	
	Pollutant	pollutants	method	control
Criteria (NAAQS) pollutants	code	(lb/yr)	code	efficiency
		2015		
HAP/TAP pollutants	CAS#		2	0%
Acetic Acid	64-19-7	95	2	0%
Hydrogen Fluoride	7664-39-03	119	2	0%

NS-H Membrane treatment (extrusion & hydrolysis) summary report.

<u>DMSO Emissions yr</u>	<u>Units</u>	<u>2015</u>
Waste Shipped	lbs/yr	38100
Waste in storage tk yr end	gallons	5293
Waste in storage tk yr end	lbs	53992
Waste % in storage tk yr end	%	88%
DMSO Waste Content	wt%	11%
DMSO in Waste liquid	lbs/yr	10130
DMSO Shipped as Waste liquid	lbs/yr	4191
KOH/DMSO waste pumped to waste treatment	gal/yr	18108
• •	lbs/yr	184705
DMSO pumped to waste treatment	lbs/yr	20318
DMSO Inventory		
inv. Begin year	drums	12
inv. End year	drums	16.668
DMSO Drums Rec	drums	124
Wt/Drum	lb/drum	500
total DMSO consumed	lbs	59666
DMSO Emissions into air	lbs/yr	29218
DMSO Emissions into air	tons/yr	14.61
·		
Acetic Acid Emissions air		
1st Quarter	hrs	17.7
2nd Quarter	hrs	9.5
3rd Quarter	hrs	39.8
4th Quarter	hrs	63.2
Total	hrs .	<u>130.2</u>
Acetic Acid Emissions Rate	lbs/hr	0.727
Acetic Acid HAP/TAP Emissions	lbs/yr	94.6
Acetic Acid HAP/TAP Emissions	tons/yr	0.047
Total VOC Emissions	lbs/yr	29313
Total VOC Emissions	tons/yr	14.66

Throughput (production) Hydrolysis product produced. Hydrolysis surface treatment	m2 m2	201136.89 30745.65
1st qrt % hrs of operations 2nd qrt % hrs of operations 3rd qrt % hrs of operations 4th qrt % hrs of operations HF Emissions		26.49% 20.31% 27.15% 26.05%
	SR Resin Extruded kg/yr	78,981
	CR Resin Extruded kg/yr	7,834
to	tal polymer extruded kg/yr	86,815
	kg HF / kg SR @ 275 deg C kg HF / kg CR @ 275 deg C	0.00068 0.00008
	kg SR Resin extruded per year kg HF / kg SR @ 275 deg C	78,981 0.00068

kg HF emitted per year

kg HF emitted per year

kg SR Resin extruded per year

Total HF Formed kg/yr

Total HF HAP/TAP Emissions lbs/yr

kg HF / kg SR @ 275 deg C

53.3

7,834

0.00008

0.6

54

119

Nafion® Membrane Coating
NS-I

(05/9)

Emission source/Operating Scenario Data

1. Emission Source ID No.

NS-I

Actual emissions per pollutant listed for source/process identified on page 1:

Criteria (NAAQS) pollutants	Pollutant code	Emissions-Criteria pollutants (tons/yr)	Emission estimation	control efficiency
		2015		
Carbon Monoxide	co	0 .	8	
NOx	NOx	0	8	
TSP	TSP	0.34	8	0%
PM 2.5	PM-2.5	0.34	8	0%
PM 10	PM-10	0.34	8	0%
SO2	SO2	0	8	
VOC	VOC	29.68	8	0%

total suspended particles	tons/yr	0.34
Annual TSP Emissions	lbs/yr	685.0
Coating Solids Paint Arrestor Effic Solids Produced	wt % % lb/yr	18% 95% 13700
TSP Emissions		
	tons/yr	29.68
Annual VOC Emissions	lbs/yr	59365
1-Propanol	wt %	8%
Ethanol Methanol	wt % wt %	69% 1%
VOC Emissions		
Coating Density Coating Consumed	lb/gal lbs/yr	7.928 76109
Annual Process Throughput	gals/yr	9600
Gallons added/batch Gallons added to remake batchs	gals gals	5 0
Remade batches	batchs	0
Gallons/batch Gallons from Original batches	gals gals	50 9600
Paint Batches	batch	192
Max Spray Coat Rate Max Process Rate	cc/min (2 guns) gal/hr	400 6.3
Coating Process yr		<u>2015</u>

E-2 Process NS-K

2015 AIR EMISSIONS INVENTORY SUPPORTING DOCUMENTATION

Emission Source ID No.:

NS-K

Emission Source Description:

Nafion E-Fluids Production Process

Process and Emission Description:

The E2 process is a batch manufacturing process. All emissions from this process vent to the atmosphere, some via a vertical stack. The control of emissions of certain compounds will be addressed in the attached spreadsheet.

Basis and Assumptions:

Engineering calculations using compositions, volumes and paritial pressures are used to determine amounts vented. See attached information for assumptions made for each vessel.

Information Inputs and Source of Info.:

Information Input	Source of Inputs
E2 production quantity	E2 Production Facilitator
Speciated emission rates	Attached calculations

Point Source Emissions Determination:

Point source emissions for individual components are given in the attached spreadsheet

Equipment Emissions and Fugitive Emissions Determination:

Emissions from equipment leaks which vent as stack (point source) emissions and true fugitive (non-point source) emissions have been determined using equipment component emission factors established by DuPont. The determination of those emissions are shown in a separate section of this supporting documentation.

2015 Emission Summary

A. VOC Emissions by Compound and Source

			Point Source	Fugitive	Equipment	Accidental	Total VOC
Compound	Compound CAS Chemical Name	CAS No.	Emissions (lb.)	Emissions (lb.)	Emissions (lb.)	Emissions (lb.)	Emissions (lb.)
E1	Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2- tetrafluoroethoxy)-	3330-15-2	260.7	24.1	0	0	284.8
E2	2H-perfluoro(5-methyl-3,6- dioxanonane)	3330-14-1	199.1	18.2	0	0	217.3
E3	2H-perfluoro-5,8-dimethyl-3,6,9- trioxadodecane	3330-16-3	1.7	0.2	0	0	1.9
		TOTAL	461.6	42.4	0	0	504.0
					TOTAL (TON)	(TON)	0.25

Point Source Emission Determination

A. "Freon" E1

CAS No. 3330-15-2

Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-

HF Potential:

E1 is a VOC without the potential to form HF.

E1 Quantity Generated:

E1 emissions are calculated on a "per batch" basis from Detailed Point Source worksheet

Source	E1 En	nissions
Transfer Tank	2.00	lbs E1 vented per batch
Interface Tank	0.29	lbs E1 vented per batch
55 gal. drum	0.53	lbs E1 vented per batch
Total	2.82	lbs E1 vented per batch

The quantity (pounds) of E1 vented is based on

42 batches of produced Crude E-fluids

2015 annual E1 emissions vented from the E-Fluids Process are calculated by the following:

B. "Freon" E2 2H-perfluoro(5-methyl-3,6-dioxanonane)

CAS No. 3330-14-1

HF Potential:

E2 is a VOC without the potential to form HF.

E2 Quantity Generated:

E2 emissions are calculated on a "per batch" basis from Detailed Point Source worksheet

Source		E2 Emissions
Transfer Tank	1.54	lbs E2 vented per batch
Interface Tank	0.22	lbs E2 vented per batch
55 gal. drum	0.40	Ibs E2 vented per batch
Total	2.15	lbs E2 vented per batch

The quantity (pounds) of E2 vented is based on

batches of produced Crude E-fluids

2015 annual E2 emissions vented from the E-Fluids Process are calculated by the following:

C. "Freon" E3

CAS No. 3330-16-3

2H-perfluoro-5,8-dimethyl-3,6,9-trioxadodecane

HF Potential:

E3 is a VOC without the potential to form HF.

E3 Quantity Generated:

E3 Emissions calculated on per batch basis from Detailed Point Soure worksheet

Source	E3 Emissions				
Transfer Tank	0.01	lbs E3 vented per batch			
Interface Tank	0.002	lbs E3 vented per batch			
55 gal. drum	0.004	lbs E3 vented per batch			
Total	0.02	lbs E3 vented per batch			

The quantity (pounds) of E3 vented is based on

42 batches of produced Crude E-fluids

2015 annual E3 emissions vented from the E-Fluids Process are calculated by the following:

Detailed Point Source Calculations

Background

Three vessels inside the E2 Building vent to the E2 Bldg. stack (EP-NEP-1). The vessels are the Transfer Tank, Interface Tank and a polypropylene 55 gal. drum. The crude E-fluids tote is filled on the outside on the E2 building, therefore vented emissions from this tote are true "Fugitive Emissions" and will be reported as such.

A. Transfer Tank

The Transfer tank is a 150 gallon vessel that is filled at a rate of 7.3 gal/min. The operating temperature during the filling is 40 degrees C. The tank is filled with 125 gallons of material. We will assume that entire tank volume (20 ft3) is vented on filling.

Calculations:

PV = nRT (assumes the Ideal Gas Law)

Tank Volume =

150 gallons / 7.48 gal/ft³ =

20.05 ft³

Contents of vessel:

		**			Vapor	Partial
					Pressure	Pressure*
Component	MW	Kgs	Moles	Mol %	(psia)	(psia)
E1	286	22.00	0.08	15.09	14.00	2.11
E2	452	189.20	0.42	82.12	1.25	1.03
E3	618	8.80	0.01	2.79	0.23	0.01
Total		220.00	0.51	100%		1

^{*} Partial Pressure = Vapor Pressure multiplied by Mol% divided by 100%

Tank temperature =

40

degrees Celsius is equal to 563.69 degrees R

R=

10.73 psia-ft3/lb-mol/degR

$$n = 2.11$$
 psia x 20.05 ft³ = 0.0070 lb
10.73 psia-ft³/lb-mol/degR 563.69 degrees R

n = moles of E2 = (Partial pressure of E2) * (Volume) / (R) / (Temperature) For E2:

For E3:
$$n = moles of E3 = (Partial pressure of E3) * (Volume) / (R) / (Temperature)$$

B. Interface Tank

The Interface Tank is a 30 gallon vessel. The E-fluids are seperated from aqueous material in the Transfer Tank and are sent to the Interface Tank. Once the Interface Tank is close to full, material is taken from the Interface Tank to a 55 gallon drum. Assume temperature is 30 degrees C and entire tank volume is vented during filling.

Calculations:

PV = nRT (assumes the Ideal Gas Law)

Tank Volume =

gallons / 7.48 gal/ft³ = 30

4.01 ft³

Contents of vessel:

					Vapor	Partial
					Pressure	Pressure*
Component	MW	Kgs	Moles	Mol %	(psia)	(psia)
E1	286	22.00	0.08	15.09	9.70	1.46
E2	452	189.20	0.42	82.12	0.85	0.70
E3	618	8.80	0.01	2.79	0.17	0.00
Total		220.00	0.51	100%		

^{*} Partial Pressure = Vapor Pressure multiplied by Mol% divided by 100%

Tank temperature =

30

degrees Celsius is equal to 545.69 degrees R

R =

10.73 psia-ft³/lb-mol/degR

For E1:

n = moles of E1 = (Partial pressure of E1) * (Volume) / (R) / (Temperature)

0.29 lb E1/batch

For E2:

n = moles of E2 = (Partial pressure of E2) * (Volume) / (R) / (Temperature)

For E3:

n = moles of E3 = (Partial pressure of E3) * (Volume) / (R) / (Temperature)

$$n = \frac{0.00 \text{ psia}}{10.73 \text{ psia-ft}^3/\text{lb-mol/degR}} \times \frac{4.01 \text{ ft}^3}{545.69 \text{ degrees R}} = 0.000003 \text{ lb-mol E3}$$

$$0.000003 \text{ lb-mol E3} \times \frac{618 \text{ lb E3}}{\text{lb-mol E3}} = 0.002 \text{ lb E3/batch}$$

C. 55 gallon drum

This drum receives material from the Interface Tank. The E-fluids are pumped from this drum through the dryer to remove any moisture that is present, before final loading into the Crude E-fluids tote. Assume filling temerature is 30 degrees C and entire drum volume vents during filling.

Calculations:

PV = nRT (assumes the Ideal Gas Law)

Tank Volume =

gallons / 7.48 gal/ft³ 55

7.35 ft³

Contents of vessel:

		,			Vapor	Partial
					Pressure	Pressure*
Component	MW	Kgs	Moles	Mol %	(psia)	(psia)
E1	286	22.00	0.08	15.09	9.70	1.46
E2	452	189.20	0.42	82.12	0.85	0.70
E3	618	8.80	0.01	2.79	0.17	0.00
Total		220.00	0.51	100%	24	

^{*} Partial Pressure = Vapor Pressure multiplied by Mol% divided by 100%

Tank temperature =

30

degrees Celsius is equal to 545.69 degrees R

R=

10.73 psia-ft3/lb-mol/degR

For E1:

n = moles of E1 = (Partial pressure of E1) * (Volume) / (R) / (Temperature)

For E2:

n = moles of E2 = (Partial pressure of E2) * (Volume) / (R) / (Temperature)

For E3:

n = moles of E3 = (Partial pressure of E3) * (Volume) / (R) / (Temperature)

D. Total Point Source Emissions from E2-Fluids process

Chemical	lb/batch	No. of batches	lbs
E1	2.82	42	118.3
E2	2.15	42	90.3
E3	0.02	42	0.8
Total			209.4

Fugitive and Equipment Emissions Determination (Non-point Source):

Fugitive Emissions(FE) and Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). For the equpiment emission calculations the inventory shown below is conservative and based on plant and process diagrams. Note that the calculations below include equipment emissions inside buildings as well as vessel emissions outside (fugitive emissions).

A. Fugitive Emissions from Crude E-fluids tote:

This 180-gallon tote is filled with dry crude E-fluids from the 55 gallon drum. This material then gets transported to the Polymers area for use. This tote can hold several batches of material. This filling activity occurs on the outside of the E2 building. Assume the filling is at 30 degrees Celsius and assume that one batch of E-fluids displaces 33% of the tote, or 60 gallons of volume, during filling. These emissions will be "Fugitive" in nature.

Calculations:

PV = nRT (assumes the Ideal Gas Law)

33% Tote Volume =

60

gallons / 7.48 gal/ft³ =

8.02 ft³

Contents of vessel:

					Vapor	Partial
					Pressure	Pressure*
Component	MW	Kgs	Moles	Mol %	(psia)	(psia)
E1	286	22.00	0.08	15.09	9.70	1.46
E2	452	189.20	0.42	82.12	0.85	0.70
E3	618	8.80	0.01	2.79	0.17	0.0047
Total		220.00	0.51	100%		

^{*} Partial Pressure = Vapor Pressure multiplied by Mol% divided by 100%

Tank temperature =

30

degrees Celsius is equal to 545.69 degrees R

R=

10.73 psia-ft3/lb-mol/degR

For E1:

n = moles of E1 = (Partial pressure of E1) * (Volume) / (R) / (Temperature)

For E2:

n = moles of E2 = (Partial pressure of E2) * (Volume) / (R) / (Temperature)

For E3:

n = moles of E3 = (Partial pressure of E3) * (Volume) / (R) / (Temperature)

Total Fugitive Emissions from E2-Fluids process

Chemical	lb/batch	No. of batches	lbs
E1	0.57	42	24.1
E2	0.43	42	18.2
E3	0.004	42	0.2
Total			42.4

B. Equipment Emissions From Valves, Pumps and Flanges

The emission rates for valves, flanges, etc. have been established by the DuPont Company. The emission rates from these types of equipment in the E-fluids process is considered "Excellent" and therefore the following rates are use: valve = (0.00039 lb/hr), flange = (0.00018 lb/hr)

Calculations:

Valve emissions:	134 valves x 0.00039 lb/hr/valve =	= 0.0523	lb/hr VOC
Flange emissions:	20 flanges x 0.00018 lb/hr/flange =	0.0036	lb/hr VOC
Total equipment emission rate	-	0.0559	lb/hr VOC

VOC:		0.0559	lb/hr VOC	
	х	0	operating hrs/year	8760
	=	0.0	lb/vr VOC	

By Component:

We will assume that equipment emissions are the same composition as the crude E-fluids (I.e. 10% E1, 86% E2, and 4% E3)

Total Equipment Emissions from E-fluids process:

		Total Equipment	Total Equipment
	Chemical	Emission Rate	Emission Rate
Chemical	Fraction	(lb/yr)	(lb/yr)
E1	10%	0.0	0.0
E2	86%	0.0	0.0
E3	4%	0.0	0.0
Total			0.0

Where the Chemical Emission Rate equals the Total Equipment Emission Rate multiplied by the Chemical Fraction

TFE/CO2 Separation Process NS-M

2015 Air Emissions Inventory Supporting Documentation

Emission Source ID No.: NS-M

Emission Source Description: TFE/CO2 Separation Process

Process and Emission Description:

The TFE/CO2 separation process is a continuous process. All emissions from this process vent to either the Nafion Division Waste Gas Scrubber (WGS) or the area vent stack. The control of emissions of the TFE compound will be addressed in the attached spreadsheet. TFE will pass completely through the scrubber, therefore the efficiency is assumed to be 0%.

Basis and Assumptions:

A mass balance is used as the basis for the TFE/CO2 area emissions. The TFE/CO2 emissions includes the TFE/CO2 area as well as the Polymers LJC and dryers. The flow of TFE/CO2 into the area is divided by two in order to determine the amount of TFE fed to the system. Then each of the end users (which includes polymers, semi-works, MMF and RSU) determine how much they have consumed and these numbers are subtracted from the total TFE into the system to determine the emissions. Mass flowmeters in each area are used to determine the total input and output flows.

Information Inputs and Source of Inputs:

Information Input	Source of Inputs
TFE/CO2 consumption	Precursor Production Facilitator/IP21
Polymers Consumption	Polymers Production Facilitator/IP21
Semiworks Consumption	Semiworks Production Facilitator/IP21
MMF Consumption	Precursor Production Facilitator/IP21
RSU Consumption	Precursor Production Facilitator/IP21

Point Source Emissions Determination:

Point source emissions for individual components are given in the following pages. A detailed explanation of the calculations are attached.

Equipment Emissions and Fugitive Emissions Determination:

Emissions from equipment leaks which vent as stack (point source) emissions and true fugitive (non-point source) emissions have been determined using equipment component emission factors established by DuPont. The determination of those emissions are shown in a separate section of this supporting documentation.

2015 Emission Summary

A. VOC Emissions by Compound

Nafion® Compound	CAS Chemical Name	CAS No.	Point Source Emissions (lb)	, -	Accidental Emissions (lb)	Total VOC Emissions (lb)
TFE	Tetrafluoroethylene	116-14-3	12720.5	38.0	0	12758.5
			Total VOC Emissions (lb)			12758
	4		Total VOC Emissions (tons)			6.38

B. Additional Emissions by Compound

Nafion® Compound	CAS Chemical Name	CAS No.	Point Source Emissions (lb)	Fugitive Emissions (lb)	Accidental Emissions (lb)	
CO2	Carbon dioxide	124-38-9	105.4	38.0	0	143.4
			Total Emissions (lb)		143.4	
			Total Emissions (tons)			0.07

Point Source Emission Determination

A. Tetrafluoroethylene (TFE)

CAS No. 116-14-3

HF Potential:

TFE is a VOC without the potential to form HF.

TFE Quantity Generated:

From Precursor area facilitator (mixture is 50% TFE and 50% CO2):

Source	Quantity
TFE/CO2 fed to area	191,270 kg TFE/CO2
Total	95,635 kg TFE fed to area

From area facilitators:

Source	Quantity Consumed			
Polymers consumption	56,956 kg TFE			
Semiworks consumption	1,159 kg TFE			
MMF consumption	5,720 kg TFE			
RSU consumption	26,030 kg TFE			
Total	89,865 kg TFE consumed			

TFE vented from the TFE/CO2 area in the reporting year:

95635 kg TFE fed
- 89865 kg TFE consumed
5770 kg TFE vented

VOC Emissions

5770.0 kg VOC **12720.5 lb. VOC**

B. Carbon dioxide (CO2)

CAS No. 124-38-9

CO2 Quantity Generated:

From Precursor area facilitator (mixture is 50% TFE and 50% CO2):

Source	Quantity
TFE/CO2 fed to area	191,270 kg TFE/CO2
Total	95,635 kg CO2 sent to Separator

The separator is assumed to remove 99.95% of the CO2. Therefore, the CO2 in the exit stream

Source	Quantity
CO2 in Product	47.8 kg CO2 exiting separator

Assume all CO2 in exit stream is vented.

CO2 Emissions

47.8 kg CO2 105.4 lb. CO2

Fugitive and Equipment Emissions Determination (Non-point Source):

Fugitive emissions (FE) are a function of the number of emission points in the plant (valves, flanges, pump seals). The inventory shown below is conservative and based on plant and process diagrams. Note that the calculations below include only the equipment upstream of the TFE/CO2 mass meter. All other fugative emissions are included in the system mass balance.

A. Fugative emissions from TFE/CO2 truck unloading area to vaporizer:

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions: 15 valves x 0.00036 lb/hr/valve = 0.005 lb/hr FE Flange emissions: 24 flanges x 0.00018 lb/hr/flange = 0.004 lb/hr FE Total TFE/CO2 emission rate = 0.004 lb/hr FE = 0.001 lb/hr FE

Days of operation = 251

 VOC:
 0.005 lb/hr TFE FE

 x
 24 hours/day

 x
 251 days/year

 =
 29.3 lb/yr VOC from EE

CO2: 0.005 lb/hr CO2 FE

x 24 hours/day

x 251 days/year

= 29.3 lb/yr CO2 from EE

B. Fugitive Emissions From TFE/CO2 Vaporizer to TFE/CO2 mass meter:

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions: 2 valves x 0.00036 lb/hr/valve = 0.001 lb/hr FE Flange emissions: 12 flanges x 0.00018 lb/hr/flange = 0.002 lb/hr FE

Total TFE/CO2 emission rate = 0.003 lb/hr FE

Days of operation = 251

VOC: 0.0014 lb/hr TFE FE

x 24 hours/day

x 251 days/year

= 8.7 lb/yr VOC from EE

CO2: 0.0014 lb/hr CO2 FE

x 24 hours/day

x 251 days/year

= 8.7 lb/yr CO2 from EE

D. Total Non-Point Source Fugative Emissions

Emission Source	VOC lb/yr
A. Fugative emissions from TFE/CO2 Truck Unloading area:	29.3
B. Fugitive Emissions From TFE/CO2 Vaporizer	8.7
Total for 2015	38.0

Note: All VOC emissions are TFE. There are no other VOC's used in the TFE/CO2 area.

Emission Source	CO2 lb/yr
A. Fugative emissions from TFE/CO2 Truck Unloading area:	29.3
B. Fugitive Emissions From TFE/CO2 Vaporizer	8.7
Total for 2015	38.0

HFPO Product Container Decontamination Process
NS-N

2015 Annual VOC Emissions Summary

HFPO Product Container Decontamination Process

Nafion® Compound	CAS Chemical Name		CAS No.	VOC Emissions (lbs)
HFPO	Hexafluoroproplyene oxide		428-59-1	19,406
HFA	Hexafluoroacetone		684-16-2	0
•	<u> </u>	Total VOC Emiss	ions (lb)	19,406
	·	Total VOC Emission	s (tons)	9.70

Emission Unit ID:

NS-N

Emission Source Description:

HFPO Product Container Decontamination Process

Emission Calculation Basis:

HFPO product containers returned from customers are decontaminated by venting residual hexafluoropropylene oxide ("HFPO") to the Nafion Division Waste Gas Scrubber (WGS). To determine the amount emitted from this process, the vapor density of HFPO is used along with the volume of the container.

Vapor density is based on Aspen process simulation data at 13°C, which is 0.0377 kg/L.

13°C was chosen based on the average 24 hour temperature for Audubon, NJ, which is located 30 miles northeast of Deepwater, NJ, the location of the primary customer of ISO containers and ton cylinders, i.e. where containers are emptied. (determined from www.worldclimate.com).

The mass of vapor in a container emptied of liquid is equal to the volume of the container multiplied by

$$M_{vap} = V * \rho_{vap}$$

Volumes of the containers currently in use are as follows:

Container	Volume (L)	Reference
ISO Container	17,000	NBPF-0460 p. 10
UNT Cylinder	1,000	BPF 353454
1-Ton cylinder	760	Columbiana Boiler Co. Literature
3AA Cylinder	50	222.c-f-c.com/gaslink/cyl/hp3AAcyl.htm

Estimated mass of HFPO vapor emitted from the decontamination of each container is estimated to be:

ISO Container	17,000 L	Х	0.0377 kg/L	=	641 kg	=	1,413 lb
UNT Cylinder	1,000 L	Χ	0.0377 kg/L	=	38 kg	=	83 lb
1-Ton cylinder	760 L	Χ	0.0377 kg/L	=	29 kg	=	63 lb
3AA cylinder	50 L	Χ	0.0377 kg/L	=	2 kg	=	4 lb

All containers are assumed to contain HFPO vapor. Occasionally some containers may contain rearranged HFPO in the form of hexafluoroacetone ("HFA"), however this should not affect vapor density since HFA has the same molecular weight as HFPO.

Emission Calculation for 2015

Container Type	Quantity of Containers	VOC per container (lb)	VOC Emissions (lb)	F-GHG Emissions (mT)
ISO Container	9	1,413	12,716	5.768
UNT Cylinder	15	83	1,247	0.566
1-Ton cylinder	28	63	1,769	0.802
3AA Cylinder	18	4	75	0.034
Total VOC Emis	15,807	7.170		
Total VOC Emis	7.90	tons		

Total Containers Decontaminated	70

Vinyl Ethers North Product Container Decontamination Process
NS-O

Page 1 of 3

Emission Unit IDs:

NS-O

Emission Source Description:

Vinyl Ethers North (VE-N) Product Container

Decontamination Process

Container Emission Estimation Basis:

Dimer, PPVE, PSPEVE and EVE are the products that are produced in the VEN facility. Usually only PPVE is shipped to customers in 1-ton cylinders from the VE Nouth Manufacturing Process. Prior to filling the containers, they are decontaminated by pressurizing with Nitrogren, venting to the Waste Gas Scrubber (WGS) and evacuating for numerous cycles. TA NF-11-1821 has been written to fill on top of heels in cylinders without the need to decontaminate. This will greatly reduce the emissions as a result of decontaminating product shipping containers. This reduction should be reflected in the 2012 VE-N product container emissions report

To determine the amount emitted from this process, the vapor density of each component is used along with the volume of the container.

Approximately 50°F (10°C) average year round temperature for Parkersburg, WV where containters are emptied (use this temperature as worse case for all products). Assume when containers are emptied they remain full of vapors.

All emissions from the process are vented through the Nafion Division Waste Gas Scrubber (Control Device ID No. NCD-Hdr) which has a documented control efficiency of 99.6% for all acid fluoride compounds. Dimer is an acid fluoride.

Vapor density is based on data from PM Report #231, PM Report PM-E-487 extrapolated to 10°C and the ideal gas equation.

<u>Product</u>	Vapor Density (lb/gal) @ 10°C
Dimer	0.020
PSEPVE	0.001
PPVE	0.034
EVE	0.010

The mass of vapor (" M_{vap} ") in a container emptied of liquid is equal to the volume of the container ("V") multiplied by the vapor density (" ρ_{vap} ").

$$M_{vap} = V * \rho_{vap}$$

Volumes of the containers currently in use are as follows:

Container		Volume	e (gal)			
ISO		3828				
UNT		264				
1 ton cylinder		200				
4BW cylinder		57				
4BA/3AA cylii	nder	15				
Estimated emission	ıs:				Before	After
Dimer					Control	Control
ISO	### gal	Χ	0.020 lb/gal	=	76.56 lb	0.30624 lb
UNT	264 gal	Х	0.020 lb/gal	=	5.28 lb	0.02112 lb
1 ton cylinder	200 gal	Х	0.020 lb/gal		4 lb	0.016 lb
4BW cylinder	57 gal	Х	0.020 lb/gal	=	1.14 lb	0.0046 lb
4BA/3AA cylinder	15 gal	X	0.020 lb/gal	=	0.3 lb	0.0012 lb
			4.	÷		
PSEPVE						
1 ton cylinder	200 gal	Χ	0.001 lb/gal	=	0.2 lb	0.2 lb
4BW cylinder	57 gal	Χ	0.001 lb/gal	=	0.057 lb	0.057 lb
4BA/3AA cylinder	15 gal	X	0.001 lb/gal	=	0.015 lb	0.015 lb
		**			•	
PPVE			0.004.11./ 1		Z O 11.	∠ 0 1L
1 ton cylinder	200 gal	Х	0.034 lb/gal	=	6.8 lb	6.8 lb
4BW cylinder	57 gal	Х	0.034 lb/gal	=	1.938 lb	1.938 lb
4BA/3AA cylinder	15 gal	Χ	0.034 lb/gal	=	0.51 lb	0.51 lb
EVE						
1 ton cylinder	200 gal	х	0.010 lb/gal	=	2 lb	2 lb
4BW cylinder	57 gal	Х	0.010 lb/gal	=	0.57 lb	0.57 lb
4BA/3AA cylinder	15 gal	X	0.010 lb/gal	=	0.15 lb	0.15 lb
TDA/SAA Cyllidei	15 gai	^	0.010 10/gai		0.12	

Emission Calculation:

	Quantity of		VOC per		VOC
Dimer	Containers		container		Emissions
ISO	1	Χ	0.306 lb	=	0.306 lb
UNT	10	Х	0.021 lb	. =	0.211 lb
1 ton cylinder	0	Χ	0.016 lb	=	0 lb
4BW cylinder	0	Х	0.005 lb	=	0 lb
4BA/3AA cylinder	0	Χ	0.001 lb	=	0 lb

PSEPVE				•	
1 ton cylinder	0	Х	0.2 lb	=	0 lb
4BW cylinder	0	Х	0.1 lb	=	0 lb
4BA/3AA cylinder	0	X	0.0 lb	=	0 lb
PPVE					
1 ton cylinder	25	Х	6.8 lb	=	170 lb
4BW cylinder	28	Х	1.9 lb	=	54.26 lb
4BA/3AA cylinder	. 0	X	0.5 lb	=	0 lb
EVE					
1 ton cylinder	0	X	2.0 lb	=	0 lb
4BW cylinder	0	Χ	0.6 lb	=	0 lb
4BA/3AA cylinder	0	Х	0.2 lb	=	0 lb

Year 2015

VE-North Product Container Decontamination Process Emission Summary:

Nafion® Compound	CAS Chemical Name	CAS No.	Total Emissions (lb.)
DIMER	Perfluoro-2-Propoxy Propionyl Fluoride	2062-98-8	0.5
PSEPVE	Perfluorinated Sulfonyl Vinyl Ether	16090-14-5	0.0
PPVE	Perfluoropropyl Vinyl Ether	1623-05-8	224.3
EVE	Ester Vinyl Ether	63863-43-4	0.0

Total VOC Emissions (lb.) 225

Total VOC Emissions (tons) 0.11

Vinyl Ethers South Product Container Decontamination Process
NS-P

Page 1 of 2

Emission Unit IDs: NS-P

Vinyl Ethers South(VE-S) Product Container

Emission Source Description: Decontamination Process

Container Emission Estimation Basis:

PMVE, PEVE and PPVE are the products that are shipped to customers in 1-ton cylinders, 4BW cylinders, 4BA/3AA cylinders and ISO tank containers from the VE South Manufacturing Process. Prior to filling the containers, they are decontaminated by pressurizing with Nitrogren, venting to the Waste Gas Scrubber(WGS) and evacuating for numerous cycles. TA's(NF-09-1737 & NF-11-1821) have been written to fill on top of heels in ISO containers as well as cylinders without the need to decontaminate. This will greatly reduce the emissions as a result of decontaminating product shipping containers. This reduction should be reflected in the 2012 VE-S product container emissions report

It is assumed that the product split between PMVE and PEVE is 70 to 30 by weight and remains unchanged. PPVE is produced very infrequently in VE-S and is not used in the max to emit calculations shown below.

It is assumed that the container split between cylinders and ISO's remains unchanged. For PMVE, 48% to Iso and 52% to ton cylinders. Assume all PEVE is placed into 1 ton cylinders

At design capacity rates of the VE South Manufacturing Process, a maximum of 1,500 kg per day at 70%/30% PM/PE split can be produced. For 365 operating days per year and 100% uptime(worse case), this equates to 383,250 kgs of PMVE and 164,250 kgs of PEVE.

Approx. 50°F(10°C) average year round temperature for Dordrecht Plant in the Netherlands, where PMVE ISO containers are emptied (use this temp as worse case for all products). Assume when containers are emptied they remain full of vapors. Vapor density for PMVE at this temp is 0.2258 lb/gal and for PEVE 0.0901 lb/gal. These densities were computed using the Peng-Robinson modification of the Redlich-Kwong equation of state.

Iso volume is 4,480 gallons. 1 ton container volume is 200 gallons

To calculate the amount of product vented per container, the container volume is multiplied by the vapor density

Maximum Potential Emissions Calculations

Decontaminated PMVE 1-ton cylinders (potential): 243 cylinders

PMVE Product vented per 1-ton cylinder: 45 lb. VOC per cylinder

PMVE Emissions from 1-ton cylinders (potential): 10,976 lb. VOC per year

Decontaminated PMVE ISO tank containers (potential): 12 containers

PMVE Product vented per ISO tank container: 1,012 lb. VOC per container

PMVE Emissions from ISO tank containers (potential): 12,406 lb. VOC per year

Decontaminated PEVE 1-ton cylinders (potential): 205 cylinders

PEVE Product vented per 1-ton cylinder: 18 lb. VOC per cylinder

PEVE Emissions from 1-ton cylinders (potential): 3,700 lb. VOC per year

Total potential emissions: 27,081 lb. VOC per year Total potential emissions: 13.5 tons VOC per year

Year

2015

VE-South VOC Container Emission Summary:

Nafion® Compound	CAS Chemical Name	CAS No.	Total Emissions (TPY)
PMVE	Perfluoromethyl vinyl ether	1187-93-5	2.43
PEVE	Perfluoroethyl vinyl ether	10493-43-3	0.03
PPVE	Perfluoropropyl vinyl ether	1623-05-8	0.00

Actual TPY Emitted from Containers 2.46

Natural Gas/No. 2 Fuel Oil Fuel Oil-Fired Boiler
(139.4 Million BTU Per Hour Maximum Heat Input)
PS-A

TOTAL CO2e

71,442.89

NATURAL GAS COMBUSTION EMISSIONS CALCULATOR REVISION M 06/22/2015 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are vie printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

INCDENTITION TO THE PROPERTY OF THE PROPERTY O	ilissions ina	i iliay be contain	eu (lesell).		_				
rangeraturgungan sa	RCE/FACIL	TY/AUSERINDU	TSUMMAR	Y (EROM INDITE	SCREEN	***	200 (12.16)		12 18 10 10 10 10 10 10 10 10 10 10 10 10 10
			2	•		FACILITY ID NO		0 900009	
		ıy - Fayettev	rine wor	KS		PERMIT NUMB	ER:	03735T42	
SION SOURCE DESCRIPTION: 139.4 MMBTU/HR NA	TURAL GAS	FIRED BOILER				FACILITY CITY:		Fayetteville	
SSION SOURCE ID NO.: PS-A ITROL DEVICE: NO CONTROL						FACILITY COUL POLLUT		Bladen CONTRI	OI EEE
EADSHEET PREPARED BY: Michael E. Johnson									
UAL FUEL THROUGHPUT: 520.34	10 ⁵ SCF/YR	FUEL HEAT VAI	LUE:	1,020	BTU/SCF	NOX	(CALC'D	AS 0%
ENTIAL FUEL THROUGHPUT: 1,197.20				ALL-FIRED BOILE		BTU/HR)	NO SNCR	APPLIED	
ESTED MAX, FUEL THRPT: 1,197,20		HOURS OF OPE			ווווווו סעו יין זו.	510/11()	INO GHOIL	AL LIED	
					N N S C S S S S S S S S S S S S S S S S				
		ACTUAL EM			POTENTIAL			EMISSION	
		(AFTER CONTROL		(BEFORE CONTR		(AFTER CONTROL		lb/mr	
POLLUTANT EMITTED TICULATE MATTER (Total)		lb/hr 1.04	10ns/yr 1.98	lb/hr 1.04	tons/yr 4.55	lb/hr 1.04	tons/yr 4.55	uncontrolled 0.007	controlled 0.007
TICULATE MATTER (Condensable)		0.78							0.008
TICULATE MATTER (Filterable)		0.26				0,26	1.14	0.002	0.002
FUR DIOXIDE (SO2)		0.08					0.36		0.00
OGEN OXIDES (NOx) BON MONOXIDE (CO)		25.97 11.48		25.97 11.48	113.73 50.28	25.97 11.48	113.73 50.28		0.186
TILE ORGANIC COMPOUNDS (VOC)		0.75							0.005
			· · ·						
TO	XIC/HAZAR			ISSIONS INFORM					
•		ACTUAL EM			POTENTIAL			EMISSION	
/ HAZARDOUS AIR POLLUTANT	CAS NUMBER	(AFTER CONTROL Ibřiir	S / LIMITS) Ibs/yr	(BEFORE CONTR lb/hr	OLS / LIMITS)	(AFTER CONTROL Ib/hr	.9./ LIMITS) lbs/yr	lb/mr uncontrolled	nBtu controlled
Idehyde (TH)	75070	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ein (TH)	107028	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
onia (T)	7664417	4.37E-01	1.67E+03	4.37E-01 2.73E-05	3.83E+03	4.37E-01	3.83E+03 2.39E-01	3.14E-03	3.14E-03
nic unlisted compounds (TH) ene (TH)	ASC-other ⁻ 71432	2.73E-05 2.87E-04	1.04E-01 1.09E+00	2.73E-05 2.87E-04	2.39E-01 2.51E+00	2.73E-05 2.87E-04	2.59E-01 2.51E+00	1.96E-07 2.06E-06	1.96E-07 2.06E-06
p(a)pyrene (TH)	50328	1,64E-07	6,24E-04	1.64E-07	1.44E-03	1.64E-07	1.44E-03	1.18E-09	1.18E-09
ium metal (unreacted) (TH)	7440417	1.64E-06	6.24E-03	1.64E-06	1.44E-02	1.64E-06	1.44E-02	1.18E-08	1.18E-08
ium metal (elemental unreacted) (TH)	7440439	1.50E-04	5.72E-01	1.50E-04	1.32E+00	1.50E-04	1,32E+00	1.08E-06	1.08E-06
mic acid (VI) (TH) It unlisted compounds (H)	7738945 COC-other	1.91E-04 1.15E-05	7.28E-01 4.37E-02	1.91E-04 1.15E-05	1,68E+00 1.01E-01	1.91E-04 1.15E-05	1.68E+00 1.01E-01	1.37E-06 8.24E-08	1.37E-06 8.24E-08
aldehyde (TH)	50000	1.03E-02	3.90E+01	1.03E-02	8.98E+01	1.03E-02	8.98E+01	7.35E-05	7.35E-05
e, n- (TH)	110543	2.46E-01	9.37E+02	2.46E-01	2.15E+03	2.46E-01	2.15E+03	1.76E-03	1.76E-03
inlisted compounds (H)	PBC-other	6.83E-05	2.60E-01	6.83E-05	5.99E-01	6.83E-05	5.99E-01	4.90E-07	4.90E-07
anese unlisted compounds (TH) ury vapor (TH)	MNC-other 7439976	5.19E-05 3,55E-05	1.98E-01 1.35E-01	5.19E-05 3.55E-05	4.55E-01 3.11E-01	5.19E-05 3.55E-05	4.55E-01 3.11E-01	3.73E-07 2.55E-07	3.73E-07 2.55E-07
alene (H)	91203	8.34E-05	3.17E-01	8.34E-05	7.30E-01	8,34E-05	7.30E-01	5.98E-07	5,98E-07
metal (TH)	7440020	2.87E-04	1.09E+00	2.87E-04	2.51E+00	2.87E-04	2.51E+00	2.06E-06	2.06E-06
um compounds (H)	SEC	3.28E-06	1.25E-02	3.28E-06	2.87E-02	3.28E-06	2.87E-02	2.35E-08	2.35E-08
e (TH)	108883	4.65E-04	1.77E+00	4.65E-04	4.07E+00	4.65E-04	4.07E+00	3.33E-06	3.33E-06
IAPs		2.58E-01	9.82E+02	2.58E-01	2,26E+03	2.58E-01	2.26E+03	1.85E-03	1.85E-03
est HAP	Hexane	2,46E-01	9,37E+02	2.46E-01	2,15E+03	2.46E-01	2.15E+03	1.76E-03	1.76E-03
TOXIC AIR	POLLUTANT	EMISSIONS INF	ORMATION	(FOR PERMITTI	NG PURPOSE	S).	Section 1		
EXPECTED A	CTUAL EMIS	SIONS AFTER CO	ONTROLS /	LIMITATIONS				EMISSION	
C AIR POLLUTANT	CAS Num.	lb/hr		lb/da	av .	lb/yr		lb/mr uncontrolled	
Ildehyde (TH)	75070	0.00E+		0.00E		0.00E+		0.00E+00	
lein (TH)	107028	0.00E+	-00	0.00E	+00	0.00E+	00	0.00E+00	0.00E+00
onia (T)	7664417	4.37E-		1.05E		1.67E+ 1.04E-		3.14E-03	3.14E-03
nic unlisted compounds (TH) ene (TH)	ASC-other 71432	2.73E- 2.87E-		6.56E 6.89E		1.04E-		1.96E-07. 2.06E-06	1.96E-07 2.06E-06
o(a)pyrene (TH)	50328	1.64E-		3,94E		6.24E-		1.18E-09	1.18E-09
ium metal (unreacted) (TH)	7440417	1.64E-	06	3.94E	-05	6,24E-		1.18E-08	1.18E-08
nium metal (elemental unreacted) (TH) le chromate compounds, as chromium (VI) equivalent	7440439	1.50E-		3.61E		5.72E-		1.08E-06	1.08E-06
le chromate compounds, as chromium (VI) equivalent aldehyde (TH)	50000	1,91E- 1.03E-		4.59E 2.46E		7,28E- 3,90E+		1.37E-06 7.35E-05	1.37E-06 7,35E-05
e, n- (TH)	110543	2.46E-		5.90E		9.37E+		1.76E-03	1.76E-03
nese unlisted compounds (TH)	MNC-other	5.19E-	05	1.25E	-03	1.98E-	01	3.73E-07	3.73E-07
ry vapor (TH)	7439976	3.55E-		8.53E		1,35E-		2.55E-07	2.55E-07
metal (TH)	7440020 108883	2.87E- 4.65E-		6.89E	-03 -02	1.09E+ 1.77E+		2.06E-06 3.33E-06	2.06E-06 3.33E-06
ene (TH)		and the design of the second s	about some constitution of the			AND THE PERSON NAMED IN COLUMN		3.33E-06	
ENHOUSE GAS EMISSIONS INFORMATION (FOR E	A LONG THE STATE OF THE STATE O		The season of the season of the			ATORY REPORT	ING RULE		GHG - PC
H. A. Carlotte and		MRR) METHOD	i (Sayar A	Vicinity design				NO.	BASED (
NHOUSE GAS POLLUTANT			· - · <u>-</u>	ACTUAL EM					POTEN
				IRR CALCULATIO				<u> </u>	
PON DIOVIDE (CO.)		metric to		metric tons/yr, Ct		short tor		short to	
BON DIOXIDE (CO₂) HANE (CH₄)		28360.		28,360		31,262		71,38	
HANE (CH₄) OUS OXIDE (N₂O)		5.35E- 5.35E-		1.34E- 1.59E-		5.90E- 5.90E-		1.35E 1.35I	
200 CARDE (1120)		5.35E-	UZ	1.09E-	TUI	0.9UE-	UZ	1.351	01

TOTAL CO2e

NOTE: CO2e means CO2 equivalent

NOTE: The DAQ Air Emissions Reporting Online (AERO) system requires short tons be reported. The EPA MRR requires metric tons be reported.

NOTE: Do not use greenhouse gas emission estimates from this spreadsheet for PSD (Prevention of Significant Deterioration) purposes.

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution, DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

COMPANY Chemours Company - Faysteville Works MAN-MEAT NUT 150.00			SOURCE//FAC	HUTIY//USERII	Neut Summ	ARY (FROI	NINPUT SCREE	N)	and the same			
PERSON NUMBER	COMPANY:							,,,,,				
ACULT COURT Person Pers	FÄÖLLITÝ ID NO.:											
ANALY CALLET Substitution Company Co												
SER FILED Michael S. Administration Application Ap			ille									
PRINCIPLE DESCRIPTION 10.2 of first Boles			F Johnson			MAXIMUM	SULFUR CONT	TENT:		0.5	%	
### POLICIFIC NOT: PS-A MAY FULL FUNDS MAY FULL FUNDS MORE POLICIFICATION MAY FULL FUNDS MAY FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FUNDS MAY FULL FUNDS MAY FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FULL FUNDS MAY FUNDS MA					_	2010	REQUE	STED PER	MIT/LIMI	TATIONS	A TOP A STATE OF	
CAPICAL PURPLE CAPICAL POLICY CAPI						MAX. FUE	L USAGE:			8,722,457	GALYR	•
SOURCHEEN PM	and the second control of the second control											
CARRON CONTENT LESS FOR CHASE COMMISSION CO						PO			(COI			
METHOD USED TO COMPUTE ACTUAL COMPONENTS: TERT: DEFAULT HIGHERY VALUE AND DEFAULT OF CHOOSEN PROCESS OF CHO								_				
METHOD USED TO COMPUTE ACTUAL CATO CARRESONS: TERT: DEFAULT HATE HEAT YOUR AND DEFAULT EF CARRESON CATTER CATORS TERT: DEFAULT HATE HEAT YOUR AND DEFAULT EF CARRESON CATORS TERT: DEFAULT HATE HEAT YOUR AND DEFAULT HEAT YOUR AND DEFAULT HATE HEAT YOUR AND DEFAULT HEAT YOUR AND DEFAULT HEAT YOUR AND DEFAULT HATE HATE HEAT YOUR AND DEFAULT HATE HATE HATE HATE HATE HATE HATE HAT						1						
CARBON CONTENT USED FOR CHALCH TOST BE CHOSEN BY PORT AND USED FOR CALCULATION TERE CHOSEN BY PORT AND USED FOR CALCULATION TERE CHOSEN BY PORT AND USED BY POR	METHOD USED TO COMPU				TIER 1: DEF	AULT HIGH		AND DEFA	ULT EF			
ACTUAL EMBOOR PROLUTANT EMITTED ACTUAL PROPERTY AND THE CONTRACTORS AND THE CONTRACTO	CARBON CONTENT USED F	FOR GHGS (kg C/	gal):		CARBON CO	NTENT NO	OT USED FOR C	ALCULATION	ON TIER O	CHOSEN		
Part			CRITE			IONS INFO						
PART CALIFORNIA												
TOTAL PARTICULATE MATTER (PM) (PM)	AID DOLL LITAMT EMITTED											
FILEPAIDE PM (PM)		TER (PM) (FPM+C	PM)									
FILEFEABLE PRACE MICROSIN (PMa) 1.00 0.00 1.00 4.39 1.00 4.39 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								1.99	8.72	2.00E+00	2.00E+00	
FILTERABLE PM-10 MICRONS (PM-2)				1.29	0.00	1.29	5.67	1.29	5.67	1.30E+00	1.30E+00	
FILTERALE PAPAZ BIOCROS (PMp.) 70 00 00 70 70 30055 710 30055 710 4001 710E-071 710		NS (PM ₁₀)			0.00	1.00	4.36					
NUMBER CARPON C				0.25	0.00	0.25	1.09					
NITROGEN (NOLDES (NOL)				70.70	0.00	70.70	309.65	70.70	309.65	7.10E+01		
VOLATIC EPICA PRICE COMPOUNDS (VOC)				23.90	0.00	23.90						
CASE Committed Companies Committed Com												
CASE ACTUAL MINISTORY ACTU		OUNDS (VOC)										
CASE ACCURATION ACCURATIO	LEAD	engerspensenger om en spille det de en en en p		0.00	0.00	0.00	0.01		0.01	1.26E-03	1.26E-U3	
CAB		<u> </u>				1				EMISSI	ON FACTOR	
MINISTER			CAS			(BEFORE C			ROLE / LIMITS)			
Antenery United Compounds (P) SPC-OPER (DE-FOD	TOXIC / HAZARDOUS AIR POLLU						lb/yr	jb/hr	lb/yr	uncontrolled	controlled	
ASS-COMP	~			0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00			
Deglies in their (unescence)	Arsenic Unlisted Compounds											
Cachem Most elemental useracied) (17) 7440498 4 J2E-04 2,5E-05 4,2E-04 3,7E-00 4,2E-04 3,7E-00 4,2C-04 4,20E-04 4,20E-04 Cacheman Advantage (17) 7440498 4 J2E-04 2,5E-05 4,2E-04 3,7E-00 4,2C-04 3,7E-00 4,2C-04 4,20E-04 4,20E-04 Cacheman Advantage (18) 74404 1,8E-04 1,8E-04 0,0E-00 0,0E												
Charmen Analy 10												
Code Code Code Code C												
Purples Purp										0.00E+00		
Function				8.1E-04	4.8E-05	8.1E-04	7.1E+00					
Lend Listable Compouncie	Fluorides (sum fluoride compounds)) <u>(T)</u>	16984488									
Languetera United Compounds This Languetera United Compounds This Languetera United Compounds This Languetera United Compounds This Languetera Thi	Formaldehyde											
Marcon, Name												
Mappy changes Color Colo												
Next										3.33E-04		
FOM inters uncontrolled (H)			7440020	4.2E-04	2.5E-05	4.2E-04						
Selection compounds (4) SEC 2.1E-03 1.9E-01 2.1E-03 1.8E-01 2.10E-03 2	Phosphorus Metal, Yellow or White	(H)										
Tolure Tri												
Sylene												
Total HAP												
CARBON DIOXIDE COLOR			1000201									
TABLE ALEXANIE ALEXANIE ALEXANIE ALEXANIE ALEXANIES EMISSION FACTOR ((b+0)^2 ga)		(H)		7,93E-02	4,70E-03	7.93E-02			6.95E+02	7,97E-02	7.97E-02	
Color Colo		79276		www.	(REGERTAL)		letakirotan (olele	RIVESES)				
Total Care Pollutrant		EXPEC	TED ACTUAL EM	ISSIONS AFTER C	ONTROLS / LIM	ITATIONS	_					
Assention Asse							lhiday	11	fur			
Benzene		/TLB				1						
Sery S											2.75E-03	
Cadium Metal (elemental unreacted)						1	.00E-02	3.66	E+00	4.20E-04	4.20E-04	
Solicition Sol				4.18	-04	1	.00E-02					
Romaldehyde	Solubie chromate compounds, as c	hromium (\ (TH)										
Mangarnese Uniteted Compounds												
Metry Metr												
Methyl chloroform												
Nickle Metal TH 7440020			_								2.36E-04	
Toluene Thi								3.66	E+00			
GREENHOUSE GAS EMISSIONS NFORMATION FOR EMISSIONS INVENTORY PURPOSES CONSISTENT, WITH EPA MANDATORY REPORTING RULE (MRR) METHOD NOT BASED ON EPA MRR METHOD				7.93	-02							
CONSISTENT WITH EPA MANDATORY REPORTING RULE (MIRR) METHOD	Xylene	(TH)	1330207	1.39	E-03	3	.35E-02	1.22	E+01	1.40E-03	1.40E-03	COPPLY ASSESSMENT OF THE OWNER, AND
Requested Emission Limitation Requested Emission Limitation Requested Emission Limitation Requested Emission Factors Reque	GREENHOUSE GAS EMIS CONSISTENT W	SSIONS INFORMA ITH EPA MANDA	TION (FOR EI TORY REPOR	MISSIONS INVE TING RULE (MF	NTORY PUR RR) METHOD	POSES) -		N				
CARBON DIOXIDE (CO2) CARBON DIOXIDE (CO4)	Distillate Fuel Of No. 2		ACTUA	L EMISSIONS				city and E	PA MRR E		Requested Em utilize requested	ission Limitatio I fuel limit and
CARBON DIOXIDE (CO₂) 0.60 0.60 0.66 99,556.02 99,556.02 99,556.02 99,556.02 METHANE (CH₄) 2.44E-05 5.13E-04 2.69E-05 4.04E+00 8.48E+01 4.04E+00 8.48E+01 NITROUS OXIDE (N₂O) 4.89E-06 1.51E-03 5.39E-06 8.08E-01 2.50E+02 8.08E-01 2.50E+02		EPA I	MRR CALCUL	ATION METH					shor	-		short tons
METHANE (CH ₄) 2.44E-05 5.13E-04 2.69E-05 4.04E+00 8.48E+01 4.04E+00 8.48E+0 NITROUS OXIDE (N₂O) 4.89E-06 1.51E-03 5.39E-06 8.08E-01 2.50E+02 8.08E-01 2.50E+02		metric tons/yr								CO2e short tons/		
NITROUS OXIDE (N₂O) 4.89E-06 1.51E-03 5.39E-06 8.08E-01 2.50E+02 8.08E-01 2.50E+02	CARBON DIOXIDE (CO₂)	0.60	0	.60	-	66 99,556.02					` 	
10 12 00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
TOTAL 0.60 TOTAL 99,891.19 TOTAL 99,891.19	NITROUS OXIDE (N₂O)				5.39	E-06	8.08E	-01 TOTAL				

Boiler PS-A

Hydrogen Chloride (HCl)

CAS No. 7647-01-0

The EPA Industrial Boiler MACT rulemaking emission factor for uncontrolled residual and distillate oil firing is given as 7.1E-5 lb/MMBtu in Docket Document Number II-B-8, Development of Average Emission Factors and Baseline Emission Estimates for the Industrial, Commercial, and Institutional Boilers and Process Heaters NESHAP, October 2002; so that figure is used as the latest information from EPA.

EPA emission factor = 7.1E-05 pounds of HCl per million BTUs generated in the boiler.

From the memo from Christy Burlew and Roy Oommen, Eastern Research Group to Jim Eddinger, U.S. EPA, OAQPS, October, 2002, Development of Average Emission Factors and Baseline Emission Estimates for the Industrial, Commercial, and Institutional Boilers and Process Heaters National Emission Standard for Hazardous Air Pollutants, Appendix A, the HCl emission factor for natural gas combustion is 1.24 x 10-5 lb. per MM-BTU.

Emission factor = 1.24E-05 pounds of HCl per million BTUs generated in the boiler.

PS-A emissions of HCl:

59 gallons of No. 2 fuel oil were burned in 2015

59 gal. No. 2 F.O. X
$$\frac{0.140 \text{ MM-BTU}}{\text{gal. No. 2 F.O.}} = 8.26\text{E}+00 \text{ MM-BTU}$$

 $8.26\text{E}+00 \text{ MM-BTU}$ X $\frac{7.1\text{E}-05 \text{ lb HCl}}{\text{MM-BTU}} = 0.0 \text{ lb HCl}$

520.34 MM-scf of Natural Gas were burned in 2015

520.340 MM-scf Natural Gas
$$\times \frac{1,028 \text{ BTU}}{\text{scf Natural Gas}} = 534,910 \text{ MM-BTU}$$
534,910 MM-BTU $\times \frac{1.2\text{E-05 lb HCl}}{\text{MM-BTU}} = 6.6 \text{ lb HCl}$

Natural gas/No. 2 fuel oil /No. 6 fuel oil-fired boiler (88.4 Million BTU Per Hour Maximum Heat Input)
PS-B

8,54E-02

1.36E-02

2.54E+01

45,305.25

TOTAL CO2e

(short tons)

NATURAL GAS COMBUSTION EMISSIONS CALCULATOR REVISION M 06/22/2015 - OUTPUT SCREEN

instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

SOU	RCE/EACH I	TY / USER INPIT	TSUMMAR	Y TEROM INCUTS	CREEN)	4656 CK 388 (15.45)	Secretary Section	24 25 N.S.	EMICK WITH
					7.7.200	FACILITY ID NO	.:	0900009	
		Company F	C, LLC			PERMIT NUMBE		03735T42	
EMISSION SOURCE DESCRIPTION: 88.4 MMBTU/HR NAT	URAL GAS-F	IRED BOILER				FACILITY CITY:		Fayetteville	
EMISSION SOURCE ID NO.: PS-B						FACILITY COUN		Bladen	
CONTROL DEVICE: NO CONTROL						POLLUTA	ANT	CONTRO	OL EFF.
SPREADSHEET PREPARED BY: Michael E. Johnson						мох		CALC'D	AS 0%
ACTUAL FUEL THROUGHPUT: 120.16		FUEL HEAT VAL		1,020					
POTENTIAL FUEL THROUGHPUT: 759.20	10 ⁸ SCF/YR	BOILER TYPE:	SMALL BO	LER (<100 mmBT	(U/HR)		NO SNCR.	APPLIED	
REQUESTED MAX. FUEL THRPT: 759.20	10 ⁶ SCF/YR	HOURS OF OPE	ERATIONS:	24				. 216 840 440 5 50 4	n on war and the second
	CRITERIA	'AIR POLLUTAN	T EMISSION	VS INFORMATION	V	A Part of the Control	AVENCE:	250 250 E	
		ACTUAL EMI			POTENTIAL.			EMISSION	
		(AFTER CONTROL	S/LIMITS)	(BEFORE CONTRO	OLS / LIMITS)	(AFTER CONTROL	9 / LIMITS)	lb/mr	
AIR POLLUTANT EMITTED		lb/hr	tons/yr	lb/hr 0.66	tons/yr 2.88	lb/hr 0.66	tons/yr 2,88	uncontrolled 0.007	0.007
PARTICULATE MATTER (Total)		0.66	0.46 0.34	0.49	2.16	0.49	2.16	0.007	0.007
PARTICULATE MATTER (Condensable) PARTICULATE MATTER (Filterable)		0.49	0.11	0.49	0.72	0.16	0.72	0.002	0.002
SULFUR DIOXIDE (SO2)		0.05	0.04	0.05	0.23	0.05	0.23	0.001	0,001
NITROGEN OXIDES (NOx)		8.67	6.01	8,67	37.96	8.67	37.96	0.098	0.098
CARBON MONOXIDE (CO)		7.28	5.05		31.89	7,28	_31.89	0.082	0.082
/OLATILE ORGANIC COMPOUNDS (VOC)		0.48	0.33	0.48	2.09	0.48	2.09	0.005	0.005
							300 W.C. (20 20 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	er na nangement	and the silver and the
TO	XIC/HAZAR			ISSIONS INFORM			STATE OF THE STATE		
		ACTUAL EMI		<u> </u>	POTENTIAL.			EMISSION	
	CAS	(AFTER CONTROL		(BEFORE CONTRO		(AFTER CONTROL		lb/mr	
DXIC / HAZARDOUS AIR POLLUTANT	NUMBER	lb/hr 4 225 06	lbs/yr 1.83E-03	lb/hr 1.32E-06	1bs/yr 1.15E-02	1.32E-06	1.15E-02	uncontrolled 1,49E-08	controlled 1.49E-08
cetaldehyde (TH)	75070 107028	1.32E-06 1.55E-06	1.83E-03 2.16E-03	1.56E-06	1.15E-02 1.37E-02	1.56E-06	1.37E-02	1,49E-08	1.76E-08
crolein (TH)	7664417	2.77E-01	3.85E+02	2.77E-01	2.43E+03	2.77E-01	2,43E+03	3.14E-03	3,14E-03
rsenic unlisted compounds (TH)	ASC-other	1.73E-05	2.40E-02	1.73E-05	1.52E-01	1.73E-05	1.52E-01	1.96E-07	1.96E-07
enzene (TH)	71432	1.82E-04	2.52E-01	1.82E-04	1.59E+00	1,82E-04	1.59E+00	2.06E-06	2.06E-06
enzo(a)pyrene (TH)	50328	1.04E-07	1.44E-04	1.04E-07	9.11E-04	1.04E-07	9.11E-04	1.18E-09	1.18E-09
eryllium metal (unreacted) (TH)	7440417	1.04E-06	1.44E-03	1.04E-06	9.11E-03	1.04E-06	9.11E-03	1.18E-08	1.18E-08
edmium metal (elemental unreacted) (TH)	7440439	9.53E-05	1.32E-01	9.53E-05	8.35E-01	9.53E-05	8.35E-01	1.08E-06	1.08E-06
hromic acid (VI) (TH)	7738945	1.21E-04	1.68E-01	1.21E-04_	1.06E+00	1.21E-04 7.28E-06	1.06E+00 6.38E-02	1.37E-06 8.24E-08	1.37E-06
obalt unlisted compounds (H)	COC-other	7.28E-06 6.50E-03	1.01E-02 9.01E+00	7,28E-06 6,50E-03	6.38E-02 5.69E+01	6.50E-03	5.69E+01	7.35E-05	
rmaldehyde (TH)	50000 110543	1.56E-01	2.16E+02	1.56E-01	1.37E+03	1.56E-01	1,37E+03	1.76E-03	
xane, n- (TH) ad unlisted compounds (H)	PBC-other	4.33E-05	6.01E-02	4,33E-05	3.80E-01	4.33E-05	3.80E-01	4.90E-07	
anganese unlisted compounds (TH)	MNC-other	3.29E-05	4.57E-02	3,29E-05	2.88E-01	3,29E-05	2.88E-01	3,73E-07	3.73E-07
lercury vapor (TH)	7439976	2.25E-05	3.12E-02	2.25E-05	1.97E-01	2.25E-05	1.97E-01	2.55E-07	2.55E-07
apthalene (H)	91203	5.29E-05	7.33E-02	5.29E-05	4,63E-01	5.29E-05	4.63E-01	5.98E-07	5,98E-07
ckel metal (TH)	7440020	1.82E-04	2.52E-01	1.82E-04	1.59E+00	1.82E-04	1.59E+00	2.06E-06	2.06E-06
elenium compounds (H)	SEC	2.08E-06	2.88E-03	2.08E-06	1.82E-02	2.08E-06	1.82E-02	2.35E-08	2.35E-08
luene (TH)	108883	2.95E-04	4.09E-01	2.95E-04	2.58E+00	2.95E-04	2.58E+00	3.33E-06	3.33E-06
		4 045 04	I 0 07E . 00	1.64E-01	1.43E+03	1.64E-01	1.43E+03	1.85E-03	1.85E-03
otal HAPs	Inc	1.64E-01	2.27E+02	1.56E-01	1.43E+03	1.56E-01	1.37E+03	1.76E-03	1.76E-03
ighest HAP TOXIC AIR	Hexane POLITITANT	1.56E-01	2.16E+02	CEOR PERMITTI	NG PURPOSI	SI-0502-01	851 851 COL	1.70E-00	IN A SEA
					CONTRACTOR OF STREET	A PARCEL MINISTER CONTRACTOR	norman ing mangamagai (Ali Ba		FACTOR
EXPECTED A	CTUAL EMIS	SIONS AFTER C	ONTROLS /	LIMITATIONS				lb/mi	
OXIC AIR POLLUTANT	CAS Num.	lb/hi	r	lb/da	зу	lb/yr		uncontrolled	controlled
cetaldehyde (TH)	75070	1.32E-	-06	3.16E	-05	1.83E-		1,49E-08	
crolein (TH)	107028	1,56E-		3.74E		2,16E-		1.76E-08	
mmonia (T)	7664417	2.77E-		6,66E-		3.85E+		3.14E-03	
senic unlisted compounds (TH)	ASC-other	1.73E-		4.16E		2.40E-		1.96E-07	
enzene (TH)	71432	1.82E-		4.37E 2.50E		2,52E- 1,44E-		2,06E-06 1.18E-09	
enzo(a)pyrene (TH)	50328 7440417	1.04E- 1.04E-		2.50E		1.44E-		1.18E-08	
eryllium metal (unreacted) (TH) admium metal (elemental unreacted) (TH)	7440417	9.53E-		2.30E		1.32E-		1.08E-06	
admium metal (elemental unreacted) (TH) bluble chromate compounds, as chromium (VI) equivalent		1.21E-		2.91E		1.68E-		1.37E-06	1.37E-00
nuble chromate compounds, as chromium (vi) equivalent rmaldehyde (TH)	50000	6.50E-		1,56E		9.01E+		7.35E-05	
xane, n- (TH)	110543	1.56E-		3.74E		2.16E+		1,76E-03	1.76E-03
anganese unlisted compounds (TH)	MNC-other_	3.29E-		7.90E	-04	4,57E-		3.73E-07	
ercury vapor (TH)	7439976	2.25E-		5.41E		3.12E-		2.55E-07	
ickel metal. (TH)	7440020	1.82E-		4.37E		2.52E-		2.06E-06	
oluene (TH)	108883	2,95E-		7.07E		4,09E-		3.33E-06	
GREENHOUSE GAS EMISSIONS INFORMATION (FOR E	MISSIONS IN	VENTORY PURP	POSES) - CO	ONSISTENT WITH	I EPA MAND	ATORY REPORT	ING RULE		GHG - P
		MRR) METHOD	9.00					₹ NO	T BASED
			ENTERENCE DE LES	ACTUAL EN	NGGIUMO SALUMAN MENNING	Angest share or William (Michigan)	Provide State Self-Military () (* North ST 40 GLESSON	eche a resemble particle
GREENHOUSE GAS POLLUTANT			EDA L	ACTUAL EN		TIFR 1		1	POTEN
•		metric to		metric tons/yr, C		short to	se/ur	chart	tons/yr
APPON DIOVIDE (OO)	<u> </u>			6,549		7,219.			58.47
ARBON DIOXIDE (CO ₂)		6549.		6,549 3.09F		1,219. 1,36E-			E-01
ETHANE (CH.)		1 124F	-01	1 3.09E	TUU	1.361	· · · ·	1 0,04	~_~U I

3.68E+00 TOTAL CO2e

METHANE (CH₄) NITROUS OXIDE (N₂O)

NOTE: CO2e means CO2 equivalent
NOTE: The DAQ Air Emissions Reporting Online (AERO) system requires short tons be reported. The EPA MRR requires metric tons be reported.
NOTE: Do not use greenhouse gas emission estimates from this spreadsheet for PSD (Prevention of Significant Deterioration) purposes.

1.24E-02

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

**************************************	Mar horsely in large		SOURCE//FA	CUTY/USED	NDITESTIMA	ΔΡΥ/ΓΕΡΟΙ	VIINDI ITISCREI	FAILSTAN	12420111010101		
COMPANY:			ours Compa						347700000000000000000000000000000000000	88.40	MMBTU/HR
FACILITY ID NO.:		90000		,,			AT VALUE:			140,000	BTU/GAL
PERMIT NUMBER:		3735T					HG CALCULAT			0.138	mm BTU/GAL
FACILITY CITY:		ayette	ville				NNUAL FUEL L			50	GALYR CALYR
FACILITY COUNTY: USER NAME:		laden lichael	E. Johnson				I ANNUAL FUEL I SULFUR CON			5,531,314 0.5	GAL/YR %
EMISSION SOURCE DESC							REQUI		RMIT/LIMI		
EMISSION SOURCE ID NO		S-B			-		L USAGE:				GAL/YR
	***TVPE'NE	eas	PARMENIAS		desirence de la competitación d		FUR CONTENT		· COI	0.5	%
BALLO DATA CANADA SA MANDE SA MANDA			OTHER	AMERICAN STREET	Shire I said the said the said	THE PARTY OF THE P	PM	200000000000000000000000000000000000000		0	9 (
			OTHER			<u> </u>	SO2	_		0 .	
METHOD USED TO COMP			OTHER EMISSIONS:		TICD 4: DEE	ALII T LIIQL	NOx THEAT VALUE	AND DEEA	IIITEE	. 0	
CARBON CONTENT USE							OT USED FOR C			CHOSEN	
				RIA AIR POLLI							
				ACTUAL E	NISSIONS		POTENTIAL EN				ON FACTOR
AID COLLUTANT EMITTE	_			(AFTER CONTR			ONTROLS / LIMITS)	(AFTER CONTI	tons/yr		10 ³ gal)
AIR POLLUTANT EMITTE FOTAL PARTICULATE MA		PM+0	:PM)	lb/hr 2.08	tons/уг 0,00	1b/hr 2.08	tons/yr 9.13	2.08	9.13	3.30E+00	
ILTERABLE PM (FPM)	(I m) (I	,,	171/	1.26	0.00	1.26	5.53	1.26	5.53	2.00E+00	
ONDENSABLE PM (CPM)			0.82	0.00	0.82	3.60	0.82	3.60	1.30E+00	_
ILTERABLE PM<10 MICR				0.63	0.00	0.63	2.77	0.63	2.77	1.00E+00	1.00E+00
ILTERABLE PM<2.5 MICE	RONS (PM _{2.5})	1		0.16	0.00	0.16	0.69	0.16	0.69	2.50E-01	2.50E-01
SULFUR DIOXIDE (SO ₂)				44.83	0.00	44.83	196.36	44.83	196,36	7.10E+01	7.10E+01
VITROGEN OXIDES (NO _x)				12.63	0.00	12,63	55.31	12.63	55.31	2.00E+01	2.00E+01
CARBON MONOXIDE (CO				3.16	0.00	3.16	13.83	3.16	13.83	5.00E+00	5.00E+00
OLATILE ORGANIC COM	POUNDS (V	OC)		0.13 0.00	0.00	0.13	0.55 0.00	0.13	0,55	2.00E-01 1.26E-03	2.00E-01 1.26E-03
EAD	arangan pangan		A) TO MILE				U.OU INFORMATION		0,00	1.20E-03	1.202-03
				ACTUAL EI			POTENTIAL EN			EMISSI	ON FACTOR
			CAS	(AFTER CONTR	OLS / LIMITS)		ONTROLS / LIMITS)	(AFTER CONTI			10 ³ gal)
OXIC / HAZARDOUS AIR POLL	.UTANT		NUMBER	lb/hr	lb/yr	lb/hr	Ib/yr	(b/hr	Ib/yr		controlled
ntimony Unlisted Compounds rsenic Unlisted Compounds		(H) (TH)	SBC-Other ASC-Other	0.0E+00 3.5E-04	0.0E+00 2.8E-05	0.0E+00 3.5E-04	0.0E+00 3.1E+00	3.5E-04	0.0E+00 3.1E+00		0.00E+00 5.60E-04
enzene		(TH)	71432	1.7E-03	1.4E-04	1.7E-03	1.5E+01		1.5E+01		
ryllium Metal (unreacted)		(TH)	7440417	2.7E-04	2.1E-05	2.7E-04	2.3E+00		2.3E+00	4.20E-04	4.20E-04
idium Metal (elemental unreag		(TH)	7440439	2.7E-04	2.1E-05	2.7E-04	2.3E+00		2.3E+00		4.20E-04
romic Acid (VI)		(TH)	7738945	2.7E-04	2.1E-05	2.7E-04	2.3E+00		2.3E+00		4.20E-04 0.00E+00
balt Unlisted Compounds hylbenzene		(H) (H)	COC-Other 100414	0.0E+00 5.2E-04	0.0E+00 4.1E-05	0.0E+00 5.2E-04	0.0E+00 4.5E+00		0.0E+00 4.5E+00		
nyidenzene uorides (sum fluoride compoun	ds)	(T)	16984488	2.4E-02	1.9E-03	2.4E-02	2.1E+02	2.4E-02		3.73E-02	3.73E-02
rmaldehyde		(TH)	50000	3.0E-02	2.4E-03	3.0E-02	2.7E+02	3.0E-02	2.7E+02	4.80E-02	4.80E-02
ad Unlisted Compounds		(H)	PBC-Other	8.0E-04	6,3E-05	8,0E-04	7.0E+00		7.0E+00		1.26E-03
anganese Unlisted Compounds		(TH)	MNC-Other	5.3E-04 2,7E-04	4.2E-05 2.1E-05	5.3E-04 2.7E-04	4,6E+00 2.3E+00		4.6E+00 2.3E+00		8.40E-04 4.20E-04
ercury, vapor ethyl chloroform		(TH) (TH)	7439976 71566	2.7E-04 1.5E-04	1.2E-05	1.5E-04	1.3E+00		1.3E+00		
apthalene		(H)	91203	2.1E-04	1.7E-05	2.1E-04	1.8E+00	2.1E-04	1.8E+00		3.33E-04
ckle Metal		(TH)	7440020	2.7E-04	2.1E-05	2.7E-04	2.3E+00		2.3E+00		4.20E-04
nosphorus Metal, Yellow or Whi	te	(H)	7723140	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.00E+00 3.30E-03
OM rates uncontrolled elenium compounds		(H) (H)	POM SEC	2.1E-03 1.3E-03	1.7E-04 1.1E-04	2.1E-03 1.3E-03	1.8E+01 1.2E+01	2.1E-03 1,3E-03		3.30E-03 2.10E-03	3.30E-03 2.10E-03
duene		(TH)	108683	5.0E-02	4.0E-03	5.0E-02	4.4E+02	5.0E-02		7.97E-02	7.97E-02
ylene		(TH)	1330207	8.8E-04	7.0E-05	8.8E-04	7.7E+00	8.8E-04	7.7E+00	1.40E-03	1.40E-03
otal HAP		(H)		9.1E-02	7.2E-03	9.1E-02	7.9E+02	9.1E-02	7.9E+02	1.4E-01	1.4E-01
argest HAP		(H)		5.03E-02	3.98E-03	5.03E-02	4.41E+02 ERMININGEZO	5.03E-02	4.41E+02	A4444	7.97E-02
			TED ACTUAL EM			17.17.17.1			44.00-40	EMISSI	ON FACTOR
		EAPEL	, CD ACTUAL EM	SSICINS AFIER C	ON I ROLD / LIMI						10 ³ gal)
OXIC AIR POLLUTANT		(T) (1	CAS Num.	b/8			Ib/day	1 1b/		uncontrolled	
rsenic Unlisted Compounds enzene		(TH) (TH)	ASC-Other 71432	3.54E 1.74E			49E-03 17E-02	3.10 1.52		5.60E-04 2.75E-03	5.60E-04 2.75E-03
eryllium Metal (unreacted)		(TH)	7440417	2.65			36E-03	2.32		4.20E-04	4.20E-04
adium Metal (elemental unreact	ed)	(TH)	7440439	2.658	-04	6.	36E-03	2.32	E+00	4.20E-04	4.20E-04
luble chromate compounds, as		(TH)	SolCR6	2,65			36E-03	2.32		4.20E-04	4.20E-04
orides (sum fluoride compound	ds)	(T)	16984488	2,368			65E-01	2.06		3.73E-02 4.80E-02	3,73E-02 4,80E-02
rmaldehyde Inganese Unlisted Compounds		(TH) (TH)	50000 MNC-Other	3,03E 5,30E			27E-01 27E-02	2.66I 4.65I		4.80E-02 8.40E-04	4.80E-02 8.40E-04
roury, vapor		(TH)	7439976	2,65			36E-03	2.32		4.20E-04	4.20E-04
thyl chloroform		(TH)	71566	1.49	-04	3.	58E-03	1.31	E+00	2.36E-04	2.36E-04
kle Metal		(HT)	7440020	2,65			36E-03	2.32		4.20E-04	4.20E-04
luene .		(TH)	108883	5.038			21E+00	4.411		7.97E-02	7.97E-02
/lene	Mahmanana	(TH)	1330207	8.84			12E-02	7.75		1.40E-03	1.40E-03
GREENHOUSE GAS EM CONSISTENTA	ISSIONS INF WITH EPA M	ORM/ ANDA	TION (FOR EN TORY REPORT	IISSIONS INVE ING RULE (MR	NTORY PURI RR) METHOD	POSES) -		Ň		POTENTIAL D ON EPA M	TO EMIT RR METHOD
Distillate Fuel Oil No.2			ACTUA	L EMISSIONS			POTENTIAL	EMISSION	S - utilize	max heat	POTENTIAL
GREENHOUSE GAS	<u></u>	EPA I	MRR CALCUL	ATION METH	OD: TIFR 1		POTENTIAL EMISSIONS - utiliz- input capacity and EPA MRR Factors		PA MRR E		Requested Em utilize requeste MRR Emi
POLLUTANT	metric tor			s/yr, CO2e	short to	ons/yr	short to	ns/yr	1	tons/yr,	short tons/yr
CARBON DIOXIDE (CO ₂)	0.51	,.		51	0.5		63,133			133.09	63,133.09

METHANE (CH₄) NITROUS OXIDE (N₂O)

2.07E-05

4.14E-06

2.28E-05

4.56E-06

2.56E+00

5.12E-01

5,38E+01

1.59E+02

63,345.64

5.38E+01

1.59E+02

63,345.64

2.56E+00

5.12E-01

TOTAL

4.35E-04

1.28E-03

0.51

Boiler PS-B

Hydrogen Chloride (HCl)

CAS No. 7647-01-0

The EPA Industrial Boiler MACT rulemaking emission factor for uncontrolled residual and distillate oil firing is given as 7.1E-5 lb/MMBtu in Docket Document Number II-B-8, Development of Average Emission Factors and Baseline Emission Estimates for the Industrial, Commercial, and Institutional Boilers and Process Heaters NESHAP, October 2002; so that figure is used as the latest information from EPA.

EPA emission factor = 7.1E-05 pounds of HCl per million BTUs generated in the boiler.

From the memo from Christy Burlew and Roy Oommen, Eastern Research Group to Jim Eddinger, U.S. EPA, OAQPS, October, 2002, Development of Average Emission Factors and Baseline Emission Estimates for the Industrial, Commercial, and Institutional Boilers and Process Heaters National Emission Standard for Hazardous Air Pollutants, Appendix A, the HCl emission factor for natural gas combustion is 1.24 x 10-5 lb. per MM-BTU.

Emission factor = 1.24E-05 pounds of HCl per million BTUs generated in the boiler.

PS-B emissions of HCl:

50 gallons of No. 2 fuel oil were burned in 2015

50 gal. No. 2 F.O.
$$\times \frac{0.140 \text{ MM-BTU}}{\text{gal. No. 2 F.O.}} = 7.00\text{E}+00 \text{ MM-BTU}$$
7.00E+00 MM-BTU $\times \frac{7.1\text{E}-05 \text{ lb HCl}}{\text{MM-BTU}} = \mathbf{0.00 \text{ lb HCl}}$

120.16 MM-scf of Natural Gas were burned in 2015

120.160 MM-scf Natural Gas
$$\times \frac{1,028 \text{ BTU}}{\text{scf Natural Gas}} = 123,524 \text{ MM-BTU}$$

123,524 MM-BTU $\times \frac{1.2\text{E-05 lb HCl}}{\text{MM-BTU}} = 1.5 \text{ lb HCl}$

Semiworks Polymerization Operation
SW-1

(0524)

SEMIWORKS SUMMARY

			Campaign Starts: Campaign Ends:	01-06-2015	03-17-2015	05-11-2015	12-07-2015		
			Month	-	က	2	12		
Compound Compound	CAS Chemical Name	CAS No.	TOTAL	15-SXF-1.0	15-SXF-2.0	15-SXF-3.0	15-SXF-4.0		
TFE	Tetrafluoroethylene	116-14-3	201.6	34.1	62.1	39.7	65.8		
PSEPVE	Perfluoro-2-(2-fluorosulfonyl ethoxy) propyl vinyl ether	16090-14-5	483.3	140.7	111.7	98.5	132.4		
E-2	2H-perfluoro(5-methyl-3,6- dioxanonane)	3330-14-1	876.5	207.5	239.5	207.6	221.9		
PAF	Trifluoroacetyl Fluoride	354-34-7	8.99	17.7	15.4	14.7	19.0		
Initiator	Perfluoro-2-methyl-3- oxahexanoyl peroxide	56347-79-6	36.5	8.7	10.7	8.6	8.4		
		CAMPAIGN TO	CAMPAIGN TOTAL VOC (Ib.)	408.7	439.5	369.0	447.4		
	TOTAL AN	TOTAL ANNUAL VOC (Ib.)	1664.7			:			
	INIMA INTER	MIAI VOC (fon)	0.83						

HAP and TAP COMPOUNDS

Compound	CAS Chemical Name	CAS No.	TOTAL	15-SXF-1.0	15-SXF-2.0	15-SXF-3.0	15-SXF-4.0	
F-113	1,1,2-trichloro-1,2,2- trifluoroethane	76-13-1	2305.5	524.5	656.5	522.1	602.5	
HCI	Hydrogen chloride	7647-01-0	0	0	0	0	0	
HF	Hydrogen fluoride	7664-39-3	66.8	17.7	15.4	14.7	19.0	

15-SXF-1.0

Start Date:	1/6/2015							End Date:	1/12/2015		
Starting Material				Additions to 1	he system						
Item	Addition (initiator)	Addition (TFE)	Addition (E2)	Addition (PSEPVE)	Addition (F113)			Addition (condensate)	Add(tion (condensate)	Addition (condensate)	
Weight (Kg): Compositions:	116.5	300,36	0	183.8	177,3			FC-8763 253,60 1673330	FC-8764 304.20 1673331	0.00	
%E2 %PSEPVE %TFE	96.60% 0.00% 0.00%	0.00% 0.00% 100.00%	100.00% 0.00% 0.00%	0.00% 100.00% 0.00%	0.00% 0.00% 0.00%			15.00% 7.97% 0.00%	15.27% 5.67% 0.00%	0.00% 0.00% 0.00%	
%F113 %Inititiator	0.00% 3.40%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	100.00% 0.00%			75.77% 0,00%	78.26% 0.00%	0.00% 0.00%	Total
Weights E2 PSEPVE TFE F113 Inititiator	112.54 0.00 0.00 0.00 3.96	0.00 0.00 300.36 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 183.80 0.00 0.00 0.00	0.00 0.00 0.00 177.30 0.00			38.04 20.21 0.00 192.15 0.00	46.45 17.25 0.00 238.07 0.00	0.00 0.00 0.00 0.00 0.00	(kg) 197.0 221.3 300.4 607.8
Ending Material											
Item		Recovery Tank				Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	
Weight (Kg): Compositions		0.00				FC-8788 296.00 1680731	FC-8789 222.80 1680732				
%E2 %PSEPVE %TFE		0.00% 0.00% 0.00%				18.88% 7.76% 0.00%	21,06% 7,77% 0,00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0,00% 0.00% 0.00%	
%F113 %Inititiator		0.00% 0.00%				71.85% 0.00%	70.35%	0.00%	0.00%	0.00%	Total

rreigina	1										TRAT
E2	0.00	0.00	0.00	0.00	0.00	55.88	46.92	0.00	0.00	0.00	102.8
PSEPVE	0.00	0.00	0.00	0.00	0.00	22.97	17.31	0.00	0.00	0.00	40,3
TFE	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.0
F113	0.00	0.00	0.00	0.00	0.00	212.68	156.74	0.00	0.00	0.00	369.4
Inititiator	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
								0,00	0.00	0.00	0.0
Production											
Item	Polymer	Throw Away	Slurry								
Weight (Kg):	402.00	0.00	0.00	•						·	
Compositions											
EW	1531		0								1
%Polymer	100.00%	100.00%	0.00%								1
%E2	100.00.0		0.00%								
%PSEPVE			0.00%								
%TFE			0.00%								
%F113			0.00%								Totals
Weights			0.0070								(kg)
Polymer	402.00	0.00	0.00								402.0
E2	0.00	0.00	0.00								0.0
PSEPVE	117.11	0.00	0.00								117.1
TFE	284.89	0.00	0.00								284,9
F113	0.00	0.00	0.00								0.0
VE in Polymer		0.00	0.00								1 *

Weights							(kg)
Polymer	402.00	0.00	0.00				402.0
E2	0.00	0.00	0.00				0.0
PSEPVE	117.11	0.00	0.00	•			117.1
TFE	284.89	0.00	0.00				284,9
F113	0.00	0.00	0.00				0.0
VE in Polymer	117.11	0.00	0.00				1 1
						' ''	
Material Balance Sum	ımary						Totals
Compound	Added	Remaining	Used	Production	Other		(kg)
E2	197,0	102.8	94.2	0.0			94.2
PSEPVE	221.3	40.3	181.0	117.1			63.9
TFE	300.4	0,0	300,4	284.9			15.5
F113	607.5	369.4	238.1	0.0			238.1
Inititlator	4.0	0.0	4.0	0.0			4.0
VE Yield							
Vinyl Ether =	PSEPVE	MW =	446				
VE in polymer		% in polymer =				•	1 1
VE used		,a iii barymer –	U-7.1 70				

Air Emissions (lb.)				·
<u>SW-1</u> TFE		<u>SW-2</u>		
	34.1 lb.	# of MF samples	0.0	All run in mfg lab
PSEPVE	140.7 lb.	grams emissions	0.0 g	
E-2	207.5 lb.	lbs of emissions	0,0 jb	
PAF	17.7 lb.			
Inititiator	8.7 lb.			
F-113	524.5 lb.			

15-SXF-2.0

Starting Material				Additions to t	the system	~	· · · · · · · · · · · · · · · · · · ·	End Date:	3/23/2015		
Item	Addition (initiator)	Addition (TFE)	Addition (E2	Addising	Addition (F113)			Addition (condensate)	Addition (condensate)	Addition (condensate)	Т
Welght (Kg): Compositions:	130	277.3	0	159.2	300.1			FC-8788 296.20 1680731	FC-8789 222.80 1680732	0.00	-
%E2	96.25%	0.00%	100.00%	0.00%	0.00%			18.88%	21.06%	0.00%	
%PSEPVE	0.00%	0.00%	0.00%	100.00%	0.00%			7.76%	7.77%	0.00%	
%TFE	0.00%	100.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0,00%	
%F113	0.00%	0.00%	0.00%	0.00%	100.00%			71.85%	70.35%	0.00%	To
%Inititiator Veights	3,75%	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	_ 0
E2	125.13	0.00	0.00	0.00	0.00			55.92	46,92	0.00	22
PSEPVE	0.00	0.00	0.00	159.20	0.00			22.99	17.31	0.00	15
TFE	0.00	277.30	0.00	0.00	0.00			0.00	0.00	0.00	27
F113	0.00	00,0	0.00	0.00	300.10			212.82	156.74	0,00	66
Inititiator	4.88	0,00	0.00	0.00	0.00			00,0	0.00	0.00	4
Ending Material											
Item		Recovery Tank				Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	
Weight (Kg):		0,00				FC-8801 300.00	FC-8802 244.00				
Compositions		0,00				1705016	1705017				
%E2		0.00%				20.70%	23,42%	0.00%	0.00%	0.00%	
%PSEPVE		0.00%				9.40%	8.06%	0.00%	0.00%	0.00%	
%TFE	l	0.00%				0.00%	0.00%	0.00%	0.00%	0.00%	
%F113		0.00%				68.69%	67.85%	0.00%	0.00%	0.00%	
%Inititiator Weights		0.00%				0.00%	0.00%	0.00%	0.00%	0.00%	_ To
E2	0.00	0.00	0.00	0.00	0.00	62.10	57.14	0.00	0.00	0.00	<u>(t</u> 11
PSEPVE	0.00	0.00	0.00	0,00	0.00	28.20	19.67	0.00	0,00	0.00	4
TFE	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	l ö
F113	0.00	0.00	0.00	0.00	0.00	206,07	165.55	0.00	0.00	0.00	37
Inititiator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Production											
tem	Polymer	Throw Away	Slurry				•				
Veight (Kg):	350.00	0.00	0.00								
Compositions											
EW	1547		0								
%Polymer %E2	100.00%	100.00%	0.00%								1
%PSEPVE			0.00% 0.00%								1
%TFE			0.00%								
%F113			0.00%								То
Nelghts										****	T (L
Polymer	350.00	0.00	0.00								35
E2	0.00	0.00	0.00								0
PSEPVE TFE	100.90 249,10	.00.00 00.0	0.00 0.00								10
F113	0.00	0.00	0.00								24
VE in Polymer	100.90	0.00	0.00								"
laterial Balance Sum	manı							•			
Compound	Added	Remaining	Used	Production	Other				Т		Tot
E2	228.0	119,2	108.7	0.0						•	10
PSEPVE	199.5	47.9	151.6	100.9					I		56
TFE	277.3	0.0	277.3	249.1							2
F113 Inititiator	669.7 4.9	371.6 0.0	298.0	0.0 0.0			•				29
mandator	4.5	0.0	4.9	0.0							٠
E Yleid						•			ļ		1
	PSEPVE	MW =	446								1
Vinyf Ether = VE in polymer	100.9	% in polymer =									1

		SW-2		**	
62.1 lb,		# of MF samples	0.0	All run in mfg jab	
111.7 lb.		grams emissions	0.0 g	•	
239.5 lb.		lbs of emissions	0.0 lb		
15.4 lb,					
10.7 lb.					
656.5 lb.					
	111.7 lb. 239.5 lb. 15.4 lb. 10.7 lb. 656.5 lb.	111.7 lb. 239.5 lb. 15.4 lb. 10.7 lb.	111.7 (b. grams emissions 239.5 (b. (bs of emissions 15.4 (b. 10.7 (b. 566.5 (b.	111.7 (b. grams emissions 0.0 g 239.5 (b. lbs of emissions 0.0 (b) 15.4 (b. lbs of emissions 0.0 (b) 10.7 (b. 656.5 (b.)	111.7 (b. grams emissions 0.0 g 239.5 (b. (bs of emissions 0.0 (b) 15.4 (b. (b)

15-SXF-3.0

Start Date	: 5/11/2015							End Date:	5/20/2015		
Starting Material				Additions to 1	he system						
Item	Addition	Addition (TFE)	Addition JEOL	Addition	Addition			Addition	Addition	Addition	T
цен	(initiator)	Addition (TFE)	Addition (E2)	(PSEPVE)	(F113)			(condensate)	(condensate)	(condensate)	
								FC-8801	FC-8802	•	7
Weight (Kg):	105.8	251	0	140,2	213.9			300,00	244.00	0.00]
Compositions:								1705016	1705017		1
%E2	96.30%	0.00%	100.00%	0.00%	0.00%			20.70%	23.42%	0.00%	
%PSEPVE	0.00%	0.00%	0.00%	100.00%	0.00%			9.40%	8.06%	0.00%	
%TFE	0.00%	100.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	
%F113	0.00%	0.00%	0.00%	0.00%	100.00%			68.69%	67.85%	0.00%	
%Inititiator	3.70%	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0,00%	Tota
Weights				-		-					(kg
E2 .	101.89	0.00	0.00	0.00	0.00			62.10	57.14	0.00	221.
PSEPVE	0.00	. 0,00	0.00	140.20	0.00			28.20	19.67	0.00	188.
TFE	0.00	251.00	0.00	0.00	0.00			0.00	0.00	0.00	251.
F113	0.00	0.00	0.00	0.00	213.90			206.07	165.55	0.00	585.
Inititiator	3.91	0.00	0,00	0.00	0.00			0.00	0.00	0.00	3.9
Ending Material											
Item		Recovery Tank				Return (condensate)	Return (condensate)	Return (condensate)	Return	Return (condensate)	T

	1						Return	Return	Return	Return	
ltem		Recovery Tank				Return (condensate)	(condensate)	(condensate)	(condensate)	(condensate)	
						FC-8813	FC-8814	,,	,		1
Welght (Kg):		0.00				300.00	223.00				
Compositions						1723215	1723216				1
%E2	1	0.00%				23.70%	25.02%	0.00%	0.00%	0,00%	
%PSEPVE		0.00%				9.14%	7.14%	0.00%	0.00%	0.00%	
%TFE		0.00%				0.00%	0,00%	0.00%	0.00%	0.00%	
%F113		0.00%				66.13%	67.31%	0.00%	0.00%	0.00%	
%Inititiator		0.00%				0.00%	0.00%	0.00%	0.00%	0.00%	` Total
Weights	1									***	(kg)
E2	0.00	0.00	0,00	0.00	0.00	71.10	55.79	0.00	0.00	0.00	126,1
PSEPVE	0.00	0,00	0.00	0.00	0.00	27.42	15.92	0.00	0.00	0.00	43.3
TFE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.0
F113	0.00	0.00	0.00	0.00	0,00	198.39	150.10	0.00	0.00	0.00	348.
Inititiator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0

Production					
item	Polymer	Throw Away	Slurry		
Weight (Kg);	333.00	0.00	0.00		
Compositions				·	
· EW	1485		0		i
%Polymer	100.00%	100.00%	0.00%	· · · · · · · · · · · · · · · · · · ·	
%E2			0.00%	·	
%PSEPVE			0.00%		
%TFE			0.00%		
%F113			0.00%	·	Totals
Weights					(kg)
Polymer	333,00	0.00	0.00		333.0
E2	0.00	0.00	0.00		0.0
PSEPVE	100.01	0.00	0.00		100.0
TFE	232.99	0.00	0.00		233.0
F113	0.00	0.00	0.00		0.0
VE in Polymer	100.01	0.00	0.00		

Material Balance Sum	mary						Totals
Compound	Added	Remaining	Used	Production	Other		(kg)
E2	221.1	126.9	94.2	0.0		· · · · · · · · · · · · · · · · · · ·	94.2
PSEPVE	188.1	43.3	144.7	100.0			44.7
TFE	251.0	0.0	251.0	233.0			18.0
F113	585,5	348.5	237.0	0.0			237.0
Inititiator	3.9	0.0	3,9	0.0		·	3.9
VE Yield							
Vinyl Ether =	PSEPVE	MW =	446				
VE in polymer	100.0	% in polymer =	69.1%				
VE used						İ	

Lbs of Emissions	·				
<u>SW-1</u> TFE		SW-2		· · · · · · · · · · · · · · · · · · ·	
TFE	39.7 lb.	# of MF samples	0.0	All run in mfg lab	
PSEPVE	98.5 lb.	grams emissions	0.0 g	•	
E-2	207.6 lb.	lbs of emissions	0.0 lb		
PAF	14.7 lb.				
Inititiator	8.6 lb.				
F-113	522.1 lb.			<u> </u>	

15-SXF-4.0

Start Date:	12/7/2015					End Date:	12/14/2015		
Starting Material				Additions to t	he system				
ltem .	Addition (initiator)	Addition (TFE)	Addition (E2)	Addition (PSEPVE)	Addition (F113)	Addition (condensate)	Addition (condensate)	Addition (condensate)	
Weight (Kg): Compositions:	105,6	332.28	0	187.3	331.8	FC-8813 300,00 1723215	FC-8814 223,00 1723216	0.00	
%E2 %PSEPVE	96.40% 0,00%	0.00%	100.00% 0.00%	0.00% 100.00%	0.00% 0.00%	23.70% 9.14%	25.02% 7.14%	0.00% 0.00%	
%TFE %F113	0.00%	100.00% 0.00%	0.00%	0.00%	0.00% 100.00%	0.00% 66.13%	0.00% 37.31%	0.00%	
%Inititiator Weights	3,60%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Totals (kg)
E2 PSEPVE	101.80 0.00	0.00 0.00	0.00 0.00	0.00 187.30	0.00 0.00	71.10 27.42	55.79 15.92	0.00 0.00	228.7 230.6
TFE F113	0.00 00.0	332.28 0.00	0.00 0.00	0.00 0.00	0.00 331,80	0.00 198,39	0.00 83.20	0.00	332.3 613.4
Inititiator	3.80	0.00	00,0	0.00	0.00	0.00	0.00	0.00	3.8

Ending Material											
Item		Recovery Tank				Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	Return (condensate)	
						FC-8837	FC-8838				
Weight (Kg):		0.00				302.00	212.00				
Compositions						1799538	1799539				
%E2		0.00%				21.92%	29.13%	0.00%	0.00%	0.00%	
%PSEPVE		0.00%				7.48%	9.13%	0.00%	0.00%	0.00%	
%TFE		0.00%				0.00%	0.00%	0.00%	0.00%	0.00%	
%F113		0.00%				69.70%	61.02%	0.00%	0.00%	0.00%	
%Inititiator		0.00%				0.00%	0.00%	0.00%	0.00%	0.00%	Totals
Weights								****			(kg)
E2	0.00	0.00	0.00	0.00	0.00	66.20	61.76	0.00	0.00	0.00	128.0
PSEPVE	0.00	0,00	0.00	0.00	0.00	22.59	19.36	0.00	0.00	0.00	41.9
TFE	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
F113	0.00	0.00	0.00	0.00	0.00	210.49	129.36	0.00	0.00	0.00	339.9
Inititiator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.0

Production				
ltem	Polymer	Throw Away	Slurry	
Welght (Kg):	431.00	0.00	0.00	
Compositions				
EW	1495		o	
%Polymer	100.00%	100.00%	0.00%	
%E2			0.00%	
%PSEPVE			0.00%	
%TFE			0.00%	
%F113	1		0.00%	Totals
Weights	i			(kg)
Polymer	431.00	0.00	0.00	431.0
E2	0.00	0.00	0.00	0.0
PSEPVE ·	128.58	0.00	0.00	128.6
TFE	302.42	0,00	0,00	302.4
F113	0.00	0.00	0.00	0.0
VE in Polymer	128.58	0.00	0.00	

Material Balance Sum	mary							Totals
Compound	Added	Remaining	Used	Production	Other			(kg)
E2	228.7	128.0	100.7	0.0		•	 	100.7
PSEPVE	230.6	41.9	188.7	128,6				60.1
TFE	332,3	0.0	332.3	302.4				29.9
F113	613.4	339.9	273.5	0.0				273.5
Inititiator	3.8	0.0	3.8	0.0				3,8
VE Yield								
Vinyl Ether =	PSEPVE	MW =	446					
VE in polymer	128.6	% in polymer =	68.1%					
VE used	188.7							

Air Emissions (lb.)		<u> </u>			
SW-1		<u>SW-2</u>			_
TFE	65.8 lb.	# of MF samples	0,0	All run in mfg lab	
PSEPVE	132.4 lb.	grams emissions	0.0 g		
E-2	221.9 lb.	lbs of emissions	di 0.0		
PAF	19.0 lb.				
Inititiator	8.4 lb.				
F-113	602.5 lb.				

Extended Aeration Biological Wastewater Treatment Facility
WTS-A

Page 1 of 2

2015 Air Emissions Inventory Supporting Documentation

Emission Source ID No.: WTS-A

Emission Source Description: Central Wastewater Treatment Plant

Process and Emission Description:

The Wastewater Treatment Plant (WWTP) consists of the biological treatment of process and sanitary wastewater utilizing extended aeration. The WWTP is comprised of an open equalization basin and open-top tanks and clarifiers. The basin is mixed using floating mixers and the tanks are aerated primarily with diffused air.

Emissions from the WWTP result from the volatilization of solubilized compounds which are air stripped via the aeration of the wastewater. The extent of the volatilization is a function of the specific compound's solubility in water and its vapor pressure, typically expressed as the compound's Henry's Law Constant. Also, the volatilization of an organic compound is dependent on its rate of biodegradability. For example, methanol which is a Hazardous Air Pollutant (HAP), is highly biodegradable, and as such its biodegradation rate is much faster than its volatilization rate, thereby limiting the air emissions of

Basis and Assumptions:

The three major compounds that are treated in the WWTP are butyraldehyde, ethylene glycol, and methanol.

The emissions of methanol from the WWTP were determined using the EPA WATER8 model. This modeling takes into account the specific operational units of the WWTP to predict the ultimate fate of specific compounds.

The Henry's Law Constant for ethylene glycol is $6.0 \times 10e-08$ atm-m3/mole. Not surprisingly, ethylene glycol is exempt from the wastewater control requirements of 40 CFR 63 Subpart G as ethylene glycol is excluded from Table 9 of that subpart.

Because of the above, it will be assumed that the WWTP unit operation's emission factors for ethylene glycol are the same as those for dimethylformamide. However, the biodegradation rate of ethylene glycol will be assumed to be the same as that of methanol, since the technical literature found in the Handbook of Environmental Data on Organic Chemicals indicates that for an acclimated system, ethylene glycol is biodegraded at twice the rate of methanol. To be conservative, the slower methanol rate will be used.

The Henry's Law Constant for butyraldehyde is $1.15 \times 10e-04$ atm-m3/mole which is higher than the Henry's Law Constant for methanol of $4.55 \times 10e-06$ atm-m3/mole, meaning the quantity that is air stripped from the wastewater would be expected to be higher than that for methanol. According to the Handbook of Environmental Data on Organic Chemicals, butyraldehyde is biodegraded at the same rate of methanol in an acclimated system.

Because of the above, it will be assumed that the WWTP unit operation's emission factors for butyraldehyde are twice as those for methanol.

The WWTP is fed 30% aqueous ammonia as a nutrient for the biological microbes. Typically the WWTP consumes 69,000 lb/yr of this solution, which equates to 20,010 lb/yr of 100% ammonia. To be conservative, the emissions of ammonia from the WWTP will assume that none of the NH3 is utilized by the microbes, who would convert the ammonia into nonvolatile nitrate. The emissions of ammonia is determined using Henry's Law.

Information Inputs and Source of Inputs:

Information Inputs	Source of Inputs
Estimated quantity of compounds entering	SARA 313 Report and other Air Emission
the WWTP for the year	Inventory inputs

Fugitive Emissions Determination:

All air emissions from the Wastewater Treatment Plant are fugitive. Estimates of the emission for individual components are given in the following pages.

2015 Air Emissions Summary

WTS-A Central Wastewater Treatment Plant

A. VOC Compound Summary

Chemours Compound	CAS Chemical Name	CAS No.	Emission (lb.)
BA	Butyraldehyde	123-72-8	139,869
EtGly	Ethylene Glycol	107-21-1	14
MeOH	Methanol	67-56-1	33,974
	Total VOC Emissions (lb.)		173,857
	Total VOC Emissions (tons)		86.93

B. Hazardous / Toxic Air Pollutant Summary

Chemours Compound	CAS Chemical Name	CAS No.	Emission (lb.)
EtGly	Ethylene Glycol	107-21-1	14
MeOH	Methanol	67-56-1	33,974
NH3	Ammonia	7664-41-7	801

2015 Emissions from Wastewater Treatment Plant (WTS-A)

	ВА	EtGly	MeOH
To WWTP from Kuraray Butacite (lb)	467,969	3,515	190,442
To WWTP from Chemours IXM Resins (lb)	-	-	29,573
Total to Chemours WWTP (lb)	467,969	3,515	220,015
Quantity entering EQB (lb)	467,969	3,515	220,015
Percent of compound volatilized	23.42%	0.29%	11.71%
Quantity volatilized from EQB (lb)	109,598	10	25,764
Quantity leaving EQB (lb)	358,371	3,505	194,251
Quantity entering Predigester (lb)	358,371	3,505	194,251
Percent of compound volatilized	8.30%	0.10%	4.15%
Quantity volatilized from Predigester (lb)	29,745	4	8,061
Quantity leaving Predigester (lb)	328,626	3,501	186,190
Quantity entering Aeration Tank (lb)	328,626	3,501	186,190
Percent of compound volatilized	0.16%	0.002%	0.08%
Quantity volatilized from Aeration Tank (lb)	526	0	149
Percent of compound biodegraded	85.00%	85.00%	85.00%
Quantity biodegraded in Aeration Tank (lb)	279,332	2,976	158,261
Quantity leaving to Cape Fear River (lb)	48,768	525	27,780
Kuraray Quantity to Cape Fear River (lb)	48,768	525	24,046
Chemours Quantity to Cape Fear River (lb)	-	-	3,734
Total Quantity to Cape Fear River (lb)	48,768	525	27,780
Butacite Fraction Volatilized to Air (lb)	139,869	14	29,408
Nafion Fraction Volatilized to Air (lb)		-	4,567
Total Volatilized to Air (lb)	139,869	14	33,974

See Note 1

Source of Reduction Factors: EPA WATER8 computer model

BA = Butyraldehyde EtGly = Ethylene Glycol MeOH = Methanol

Note 1: Based on best professional judgement of Ken W. Cook, PE (DuET Wastewater Consultant) the "Percent of compound biodegraded" was reduced from 94+% to 85% for the reports beginning calendar year 2012. It is believed that an acclimated biological system would be able to biodegrade 85% of these simple organic compounds during the 18-hour residence period.

2015 Air Emissions Inventory Supporting Documentation

Emission Source ID No.: WTS-A

Emission Source Description: Central Wastewater Treatment Plant

Ammonia (NH₃) Emissions

The wastewater treatment plant ("WWTP") is fed aqueous ammonia (30% NH₃) as a nutrient for the biological microbes.

In 2015, the WWTP consumed 69,706 pounds of 30% aqueous ammonia, which equates to 20,912 pounds of 100% ammonia (100% NH3).

The aqueous ammonia is fed directly into the WWTP Aeration Tank that is aerated via 2,000 cubic feet per minute of diffused air injected into the bottom of the tank.

The aqueous ammonia is fed directly into the WWTP Aeration Tank that is aerated via 2,000 cubic feet per minute of diffused air injected into the bottom of the tank. To be conservative, the emissions of ammonia from the WWTP will assume that none of the NH3 is utilized by the microbes, who would convert the ammonia into nonvolatile nitrate.

The WWTP influent averages approximately one (1) million gallons of water per day, which is equal to 3,044,100,000 lb. of water per year.

Concentration of NH₃ in the Aeration Tank

$$\frac{20,912 \text{ lb. NH}_3}{\text{year}} \times \frac{\text{year}}{3,044,100,000 \text{ lb. water}} = \frac{0.00000687 \text{ lb. NH}_3}{\text{lb. water}}$$

$$\frac{0.00000687 \text{ lb. NH}_3}{\text{lb. water}} \times \frac{453.6 \text{ g NH}_3}{\text{lb. NH}_3} \times \frac{2,204.6 \text{ lb. water}}{\text{m}^3 \text{ water}} = \frac{6.87 \text{ g NH}_3}{\text{m}^3 \text{ water}}$$

Henry's Law Constant for Ammonia in water at 30 deg C (see Note 1)

$$K_h = (0.2138/T) 10^{6.123 - 1825/T}$$

$$K_h = \frac{0.000888 \text{ g NH}_3 / \text{m}^3 \text{ air}}{\text{g NH}_3 / \text{m}^3 \text{ water}}$$

Note 1: Montes, F., C. A. Rotz, H. Chaoui. (2009). "Process Modeling of Ammonia Volatilization from Ammonium Solution and Manure Surfaces: A Review with Recommended Models." Transactions of the American Society of Agricultural and Biological Engineers (ASABE), 52(5): 1707-1720.

Concentration of NH3 in the Aeration Tank's Diffused Air

$$\frac{0.000888 \text{ g NH}_3 / \text{m}^3 \text{ air}}{\text{g NH}_3 / \text{m}^3 \text{ water}} \times \frac{6.87 \text{ g NH}_3}{\text{m}^3 \text{ water}} = \frac{0.00610 \text{ g NH}_3}{\text{m}^3 \text{ air}}$$

Emission of NH₃ from the Aeration Tank's Diffused Air

Basis: Diffused air injection rate of 2,000 ft³ air per minute

$$\frac{2,000 \text{ ft}^3 \text{ air}}{\text{minute}} \quad X \quad \frac{\text{m}^3}{35.315 \text{ ft}^3} \quad X \quad \frac{525,600 \text{ min}}{\text{year}} \quad = \quad \frac{29,766,388 \text{ m}^3 \text{ air}}{\text{year}}$$

$$\frac{0.00610 \text{ g NH}_3}{\text{m}^3 \text{ air}} \quad X \quad \frac{29,766,388 \text{ m}^3 \text{ air}}{\text{year}} \quad X \quad \frac{\text{lb.}}{453.6 \text{ g}} = \frac{400.3 \text{ lb. NH}_3}{\text{year}}$$

Emission of NH₃ from the WWTP Clarifiers

The final wastewater treatment unit operation are the clarifiers in which the biomass is separated from the treated process wastewater through gravity settling. The clarifiers are quiessent tanks with no mixing or aeration. Any emissions of ammonia from the clarifiers would be a small fraction of the estimated ammonia emissions from the Aeration Tank. To be conservative, it will be assumed that the emissions of ammonia from the clarifiers are equal to the ammonia emissions from the Aeration Tank.

Emission of NH_3 from the WWTP Clarifiers = 400.3 lb. NH_3 / year

Total Emission of NH₃ from the WWTP System (ID No. WT-A)

Emission of NH_3 from the WWTP Aeration Tank = 400.3 lb. NH_3 / year Emission of NH_3 from the WWTP Clarifiers = 400.3 lb. NH_3 / year

Emission of NH_3 from the WWTP System = 800.6 lb. NH_3 / year